Frieze Group in Generating Traditional Cloth Motifs of the East Nusa Tenggara Province

Yessica Nataliani

Abstract


Ethnomathematics studies the relationship between mathematics and culture. Indonesia has many traditional cultures. One of them is traditional cloth. The traditional cloth from East Nusa Tenggara (NTT) province is called tenun ikat. Since the motif of tenun ikat consists of symmetrical and repeated patterns, it can be generated using Frieze groups. The Frieze groups are the plane symmetry groups of patterns whose subgroups of translations are isomorphic to Z. There are seven groups in the Frieze groups, i.e., F_1, F_2, F_3, F_4, F_5, F_6, and F_7. Translation, reflection, rotation, and glide reflection are the transformation used in the Frieze groups. In this paper, Frieze groups are used to generate digital tenun ikat motifs from the basic pattern. Since one piece of original tenun ikat may consist of some basic patterns, the basic patterns are identified first, and then each of them is generated into the desired pattern, according to the suitable Frieze groups. Furthermore, a GUI Matlab program is developed to generate the Frieze groups. Three motifs of tenun ikat are presented to demonstrate the implementation of Frieze groups. With the Frieze group, users can generate other patterns from a basic pattern, so users can generate new motifs of tenun ikat without leaving the cultural characteristics of NTT province.

 


Keywords


Frieze group; Traditional cloth motifs; Tenun ikat; Motif generation.

Full Text:

DOWNLOAD [PDF]

References


Abdullah, N., Salleh, N. S. M., Arif, H. A., Noor, A. I. M., & Omar, J. (2019). Symmetry Patterns: An Analysis on Frieze Patterns in Malay Telepuk Fabric. International Journal of Technical Vocational and Engineering Technology, 1(1), 38–45. http://www.journal.pktm.org/index.php/ijtvet/article/view/15

Administrator. (2019). Tenun NTT, Harta Keluarga yang Bernilai Tinggi. https://www.indonesia.go.id/ragam/budaya/kebudayaan/tenun-ntt-harta-keluarga-yang-bernilai-tinggi

Andriani, L., Muchyidin, A., & Raharjo, H. (2020). Frieze Group Pattern in Buyung Dance Formation. EduMa: Mathematics Education Learning and Teaching, 9(2), 11–24. https://doi.org/10.24235/eduma.v9i2.6960

Azizah, N. (2021). Tenun NTT Butuh Regenerasi Perajin. https://www.republika.co.id/berita/quq9z8463/tenun-ntt-butuh-regenerasi-perajin

Davvaz, B. (2021). Frieze and Wallpaper Symmetry Groups. In Groups and Symmetry. 179–212. Springer, Singapore. https://doi.org/10.1007/978-981-16-6108-2_9

De Las Peñas, M. L. A. N., Garciano, A., Verzosa, D. M., & Taganap, E. (2018). Crystallographic Patterns in Philippine Indigenous Textiles. Journal of Applied Crystallography, 51(2), 456–469. https://doi.org/10.1107/S1600576718002182

Gallian, J. (2021). Contemporary Abstract Algebra. In Contemporary Abstract Algebra (9th ed.). Boston: Cengage Learning. https://doi.org/10.1201/9781003142331

Gual, Y. A. (2021). Pergeseran Penggunaan Tenun Ikat pada Masyarakat Desa Tanah Putih. Jurnal Ilmu Komunikasi, 2(1), 85–110. https://journal.unwira.ac.id/index.php/VERBAVITAE/article/view/463

Hidayati, F. N., & Prahmana, R. C. I. (2022). Ethnomathematics’ Research in Indonesia during 2015-2020. Indonesian Journal of Ethnomathematics, 1(1), 29–41. https://journal.i-mes.org/index.php/ije/article/view/14

Hobanthad, S., & Prajonsant, S. (2021). Application of Wallpaper Group p6m to Creation of Handwoven Mudmee Silk Patterns. Mathematical Journal, 66(704), 7–25. https://doi.org/10.14456/mj-math.2021.7

Kartika, D., Suwanto, F. R., Niska, D. Y., & Ilmiyah, N. F. (2022). Analysis of Frieze and Crystallographic Patterns of North Sumatran Malay Songket Textile. Journal of Physics: Conference Series, 2193, 1–9. https://doi.org/10.1088/1742-6596/2193/1/012085

Koss, L. (2021). One-color Frieze Patterns in Friendship Bracelets: A Cross-Cultural Comparison. Bridges 2021 Conference Proceedings, October, 253–256.

Libo-On, J. T. (2019). Crystallographic and Frieze Groups Structures in Hablon. International Journal of Advance Study and Research Work, 2(5), 25–36. https://doi.org/10.5281/zenodo.3236439

Maghiszha, D. F. (2019). Mengenal Tenun ikat Khas NTT, Sejarah hingga Proses Pembuatannya. https://www.tribunnewswiki.com/2019/12/30/mengenal-tenun-ikat-khas-ntt-sejarah-hingga-proses-pembuatannya

Makur, A. P., Gunur, B., & Rampung, B. (2020). Exploring Motifs in Towe Songke, Manggaraian Ethnic Woven Fabric, in Mathematics Perspective. SJME (Supremum Journal of Mathematics Education), 4(2), 124–133. https://doi.org/10.35706/sjme.v4i2.3457

Nainupu, J. S. (2018). Museum Tenun ikat Provinsi Nusa Tenggara Timur. Universitas Kristen Duta Wacana.

Nataliani, Y., Wellem, T., & Iriani, A. (2021). Pembangkitan Pola menggunakan Konsep Grup Kertas Dinding. AITI, 81(1), 1–13. https://doi.org/10.24246/aiti.v18i1.1-13

Nggumbe, C. L. B. P., Mayasari, K., & Jamco, T. H. M. (2018). Pola Frieze pada Batik Papua. Seminar Nasional Matematika Dan Pendidikan Matematika, 44–49.

Novemyleo. (2020). Fantastik, Selembar Tenun Ikat NTT Bisa Capai Harga Ratusan Juta Rupiah, Ini Alasannya. https://poskupangwiki.tribunnews.com/2020/01/02/fantastik-selembar-tenun-ikat-ntt-bisa-capai-harga-ratusan-juta-rupiah-ini-alasannya?page=all

Oktavianto, R. G., Ratnasari, R. R. L. H., & Puspitasari, A. D. (2018). Frieze Group dalam Tari Saman. Seminar Nasional Matematika Dan Pendidikan Matematika, 72–77.

Puspasari, R., Hartanto, S., Gufron, M., Wijayanti, P., & Budiarto, M. T. (2022). Frieze Pattern on Shibori Fabric. Journal of Medives: Journal of Mathematics Education IKIP Veteran Semarang, 6(1), 67–78. https://doi.org/10.31331/MEDIVESVETERAN.V6I1.1904

Rahmawati, A., Helmi, H., & Fran, F. (2018). Frieze Group pada Seni Dekoratif Mesjid. Buletin Ilmiah Math, Stat, Dan Terapannya, 7(1), 23–32. https://doi.org/10.26418/bbimst.v7i1.23583

Redaksi impresinews.com. (2021). Julie Klaim Tenun Ikat NTT di Akui oleh Dunia. https://impresinews.com/julie-klaim-tenun-ikat-ntt-di-akui-oleh-dunia/

Redaksi Kompas. (2019). Ketika Tenun Ikat NTT Mulai Mendunia. https://www.kompas.id/baca/arsip/2019/09/06/ketika-tenun-ikat-ntt-mulai-mendunia

Redaksi PI. (2021). Kain Tenun ikat khas NTT: Kain Kuno Bernilai Tinggi. https://pariwisataindonesia.id/headlines/kain-tenun-ikat-khas-ntt/

Risdiyanti, I., & Prahmana, R. C. I. (2017). Ethnomathematics: Exploration in Javanese culture. The 1st Ahmad Dahlan International Conference on Mathematics and Mathematics Education, 1–6.

Rosa, M., Shirley, L., Gavarrete, M. E., & Alangui, W. V. (Eds.). (2017). Ethnomathematics and its Diverse Approaches for Mathematics Education (1st ed.). Springer Cham. https://doi.org/10.1007/978-3-319-59220-6

Salma, I. R., Syabana, D. K., Satria, Y., & Cristianto, R. (2018). Diversifikasi Desain Produk Tenun ikat Nusa Tenggara Timur dengan Paduan Teknik Tenun dan Teknik Batik. Dinamika Kerajinan Dan Batik: Majalah Ilmiah, 35(2), 85–94. https://doi.org/10.22322/dkb.v35i2.4174

Shin, H., Sheen, S., Kwon, H., & Mun, T. (2021). Korean Traditional Patterns: Frieze and Wallpaper. Handbook of the Mathematics of the Arts and Sciences, 649–664. https://doi.org/10.1007/978-3-319-57072-3_17

Sroyer, A. M., Nainggolan, J., & Hutabarat, I. M. (2018). Exploration of Ethnomathematics of House and Traditional Music Tools Biak-Papua Cultural. Formatif: Jurnal Ilmiah Pendidikan IPA, 8(3), 175–184. https://doi.org/10.30998/formatif.v8i3.2751

Starinsky, M., & Hoffmeyer, K. (2008). The Cleveland Museum of Art Repeat, Repeat, Pattern, Pattern (1st ed.). Cleveland Museum of Art.

Truna, L. A., Tugang, N. B., Shaipullah, N. C. M., & Mahyan, N. R. D. (2021). Analysis of Frieze Patterns Concepts in Pua Kumbu. Natural Volatiles & Esential Oils, 8(4), 10949–10962. https://www.nveo.org/index.php/journal/article/view/2295/2027

Vasquez, R. S., Valera, N. B., & Zales, J. P. (2020). Crystallographic Pattern Analysis of the Loom Woven Clothes of Abra. International Journal of Innovation, Creativity and Change, 14(3), 353–381. https://www.ijicc.net/images/Vol_14/Iss_3/14323_Vasquez_2020_E_R.pdf

Zarbaliyev, H. (2017). Multiculturalism in Globalization Era: History and Challenge for Indonesia. Journal of Social Studies, 13(1), 1–16. https://doi.org/10.21831/jss.v13i1.16966




DOI: https://doi.org/10.31764/jtam.v6i3.8568

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yessica Nataliani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: