Bootstrap Resampling in Gompertz Growth Model with Levenberg–Marquardt Iteration
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Achcar, J. A., & Lopes, S. R. C. (2016). Linear and Non-Linear Regression Models Assuming a Stable Distribution. Revista Colombiana de Estadística, 39(1), 109–128. https://doi.org/10.15446/rce.v39n1.55144
Akin, E., Pelen, N. N., Tiryaki, I. U., & Yalcin, F. (2020). Parameter identification for gompertz and logistic dynamic equations. PLoS ONE, 15(4), 0–21. https://doi.org/10.1371/journal.pone.0230582
Arnastauskaitė, J., Ruzgas, T., & Bražėnas, M. (2021). An exhaustive power comparison of normality tests. Mathematics, 9(7), 1–20. https://doi.org/10.3390/math9070788
Bagus, I., Ari, O., Dwiatmono, A. W., & U, B. S. S. (2013). Penerapan bootstrap pada neural network untuk peramalan produksi minyak mentah di indonesia. Jurnal Sains Dan Seni POMITS, 2(2), 201–206.
Bello, A. O., Bamiduro, A. T., Chuwkwu, A. U., & Osowole, I. O. (2015). Bootstrap Nonlinear Regression Application in a Design of an Experi- ment Data for Fewer Sample Size. International Journal of Research (IJR), 2(2), 428–441.
Bose, A., & Chatterjee, S. (2018). U -Statistics , M m -Estimators and Resampling. Springer.
Chakraborty, B., Bhattacharya, S., Basu, A., Bandyopadhyay, S., & Bhattacharjee, A. (2014). Goodness-of-fit testing for the Gompertz growth curve model. Metron, 72(1), 45–64. https://doi.org/10.1007/s40300-013-0030-z
Conde-Gutiérrez, R. A., Colorado, D., & Hernández-Bautista, S. L. (2021). Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México. Nonlinear Dynamics, 7. https://doi.org/10.1007/s11071-021-06471-7
dreper and smit (Third). (1998). Wiley. https://doi.org/10.1002/9781118625590
Efron, B., & Tibshirani, R. J. (1993). An Introduction to the Bootstrap. In S. Hinkley, Reid, Rubin and (Ed.), An Introduction to the Bootstrap. Chapman & Hall. https://doi.org/10.1007/978-1-4899-4541-9
Gavin, H. P. (2019). The Levenberg-Marquardt Algorithm For Nonlinear Least Squares Curve-Fitting Problems. Duke University, 1–19. http://people.duke.edu/~hpgavin/ce281/lm.pdf
Ghosh, H., Iquebal, M. A., & Prajneshu. (2011). Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm. Journal of Applied Statistics, 38(3), 491–500. https://doi.org/10.1080/02664760903521401
Hecke, T. Van. (2017). The Levenberg-Marquardt method to fit parameters in the Monod kinetic model. Journal of Statistics and Management Systems, 20(5), 953–963. https://doi.org/10.1080/09720510.2017.1325090
Hipkins, R., & Cowie, B. (2016). The sigmoid curve as a metaphor for growth and change. Teachers and Curriculum, 16(2). https://doi.org/10.15663/tandc.v16i2.136
Huang, H. H., Hsiao, C. K., & Huang, S. Y. (2010). Nonlinear regression analysis. International Encyclopedia of Education, 339–346. https://doi.org/10.1016/B978-0-08-044894-7.01352-X
Ibrahim, J., Chen, M.-H., & Sinha, D. (2009). Springer Series in Statistics. In The Elements of Statistical Learning (Vol. 27, Issue 2).
Kalina, J., & Peštová, B. (2017). Various Approaches to Szroeter ’ s Test for Regression Quantiles. 361–365.
Larasati, A. (2020). Analysis of Quadratic Pathway with Resampling Bootstrap on Simulation Data. International Journal of Advanced Science and Technology, 29(6), 8582–8588.
Lenart, A., & Missov, T. I. (2016). Goodness-of-fit tests for the Gompertz distribution. Communications in Statistics - Theory and Methods, 45(10), 2920–2937. https://doi.org/10.1080/03610926.2014.892323
Li, P., & Dimitris, P. (2016). Bootstrap prediction intervals for linear, nonlinear, and nonparametric autoregressions. Annals of Statistics, 44(2), 629–659.
Mohd Razali, N., & Bee Wah, Y. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 13–14.
Nguimkeu, P. (2014). A simple selection test between the Gompertz and Logistic growth models. Technological Forecasting and Social Change, 88, 98–105. https://doi.org/10.1016/j.techfore.2014.06.017
Panik, M. J. (2014). Growth curve modeling: Theory and applications. In Growth Curve Modeling: Theory and Applications. John Wiley & Sons, Inc., Hoboken, New Jersey. https://doi.org/10.1002/9781118763971
Patmanidis, S., Charalampidis, A. C., Kordonis, I., Mitsis, G. D., & Papavassilopoulos, G. P. (2017). Comparing Methods for Parameter Estimation of the Gompertz Tumor Growth Model. IFAC-PapersOnLine, 50(1), 12203–12209. https://doi.org/10.1016/j.ifacol.2017.08.2289
Pradani, W. A., Setiawan, A., & Parhusip, H. A. (2021). Analisis Regresi Non Linear Pada Data Pasien Covid-19 Menggunakan Metode Bootsrap. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(3), 453–466. https://doi.org/10.30598/barekengvol15iss3pp453-466
Rahman, M. M., Hossain, M. M., & Majumder, A. K. (2013). Classification Rule for Small Samples: A Bootstrap Approach. International Journal of Advanced Scientific and Technical Research Issue, 3(1), 337–344.
Román-Román, P., Romero, D., Rubio, M. A., & Torres-Ruiz, F. (2012). Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing. Applied Mathematics and Computation, 218(9), 5121–5131. https://doi.org/10.1016/j.amc.2011.10.077
Rousselet, G. A., Pernet, C. R., & Wilcox, R. R. (2021). The Percentile Bootstrap: A Primer With Step-by-Step Instructions in R. Advances in Methods and Practices in Psychological Science, 4(1). https://doi.org/10.1177/2515245920911881
solimun, fernandes adji. (2017). 23.back-cov_12214_Metode_Statistika_Multivariat_Pemodelan_Persamaan_Struktural__SEM__Pendekatan_WarpPLS__.pdf (p. 25). Brawijaya press.
Tjørve, K. M. C., & Tjørve, E. (2017). The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE, 12(6), 1–17. https://doi.org/10.1371/journal.pone.0178691
Wang, S., Xu, M., Zhang, X., & Wang, Y. (2022). Fitting Nonlinear Equations with the Levenberg–Marquardt Method on Google Earth Engine. Remote Sensing, 14(9), 1–14. https://doi.org/10.3390/rs14092055
Wardhani, W. S., & Kusumastuti, P. (2013). Describing the height growth of corn using Logistic and Gompertz model. Agrivita, 35(3), 237–241. https://doi.org/10.17503/Agrivita-2013-35-3-p237-241
Zhou, R., Wu, D., Fang, L., Xu, A., & Lou, X. (2018). A Levenberg-Marquardt backpropagation neural network for predicting forest growing stock based on the least-squares equation fitting parameters. Forests, 9(12), 1–16. https://doi.org/10.3390/f9120757
DOI: https://doi.org/10.31764/jtam.v6i4.8617
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Fandi Rezian Pratama Gultom, Solimun, Nurjannah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: