Modeling Prevalence of Hypertension in Indonesia with Multivariate Adaptive Regression Splines Method
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Addini, P. F., Hadi, W., Muslim, P., & Harahap, R. (2023). Application Of The Multivariate Adaptive Regression Spline (Mars) Method In Analyzing Misclassification Of Elementary School Accreditation Data In The City Of Tebing Tinggi. Jurnal Scientia, 12(1), 617–620. http://infor.seaninstitute.org/index.php
Andini, F. A. D., & Siregar, A. Y. M. (2024). Work hours and the risk of hypertension: the case of Indonesia. BMC Public Health, 24(1), 2480. https://doi.org/10.1186/s12889-024-20003-z
Badan Kebijakan Pembangunan Kesehatan. (2023). Survei Kesehatan Indonesia Dalam Angka.
Bekar Adiguzel, M., & Cengiz, M. A. (2023). Model selection in multivariate adaptive regressions splines (MARS) using alternative information criteria. Heliyon, 9(9), e19964. https://doi.org/10.1016/j.heliyon.2023.e19964
Casas, R., Castro-Barquero, S., Estruch, R., & Sacanella, E. (2018). Nutrition and cardiovascular health. In International Journal of Molecular Sciences (Vol. 19, Issue 12). MDPI AG. https://doi.org/10.3390/ijms19123988
Chang, C. C., Yeh, J. H., Chiu, H. C., Liu, T. C., Chen, Y. M., Jhou, M. J., & Lu, C. J. (2023). Assessing the length of hospital stay for patients with myasthenia gravis based on the data mining MARS approach. Frontiers in Neurology, 14, 1283214. https://doi.org/https://doi.org/10.3389/fneur.2023.1283214
Forouhi, N. G., Krauss, R. M., Taubes, G., & Willett, W. (2018). Dietary fat and cardiometabolic health: Evidence, controversies, and consensus for guidance. BMJ (Online), 361, 1–8. https://doi.org/10.1136/bmj.k2139
Friedman, J. H. (1991). Multivariate Adaptive Regression Splines. The Annals of Statistics, 19(1), 1 – 67. https://doi.org/10.1214/aos/1176347963
Friedman, J. H., & Roosen, C. B. (1995). An introduction to multivariate adaptive regression splines. Statistical Methods in Medical Research, 4(3), 197–217. https://doi.org/10.1177/096228029500400303
Junaedi, M., Nasikhin, Hasanah, S., & Hassan, Z. (2023). Learning Patterns in Influencing Attitudes of Religious Tolerance in Indonesian Universities. Education Sciences, 13(3), 285. https://doi.org/10.3390/educsci13030285
López, F., & Kholodilin, K. (2023). Putting MARS into space. Non-linearities and spatial effects in hedonic models. Papers in Regional Science, 102(4), 871–896. https://doi.org/10.1111/pirs.12738
Maleki, J., & Pak, A. (2022). A Rapid Design Procedure for Tied-Back Soil Walls Using Multivariate Adaptive Regression Splines (MARS) Method. Geotechnical and Geological Engineering, 41(2), 1521–1535. https://doi.org/10.1007/s10706-022-02351-y
Maniero, C., Lopuszko, A., Papalois, K. B., Gupta, A., Kapil, V., & Khanji, M. Y. (2023). Non-pharmacological factors for hypertension management: a systematic review of international guidelines. In European Journal of Preventive Cardiology (Vol. 30, Issue 1, pp. 17–33). Oxford University Press. https://doi.org/10.1093/eurjpc/zwac163
Mutebi, R. K., Semulimi, A. W., Mukisa, J., Namusobya, M., Namirembe, J. C., Nalugga, E. A., Batte, C., Mukunya, D., Kirenga, B., Kalyesubula, R., & Byakika-Kibwika, P. (2023). Prevalence of and Factors Associated with Hypertension Among Adults on Dolutegravir-Based Antiretroviral Therapy in Uganda: A Cross Sectional Study. Integrated Blood Pressure Control, 16, 11–21. https://doi.org/10.2147/IBPC.S403023
Ningsih, P. S. (2024). Pemodelan Multivariate Adaptive Regression Splines pada Prevalensi Hipertensi di Provinsi Jawa Timur. Institut Teknologi Sepuluh Nopember.
Özmen, A., Zinchenko, Y., & Weber, G.-W. (2022). Robust multivariate adaptive regression splines under cross-polytope uncertainty: an application in a natural gas market. Annals of Operations Research, 324, 1–31. https://doi.org/10.1007/s10479-022-04993-w
Putra, R., Fadhlurrahman, M. G., & Gunardi. (2023). Determination of the best knot and bandwidth in geographically weighted truncated spline nonparametric regression using generalized cross validation. MethodsX, 10, 101994. https://doi.org/10.1016/j.mex.2022.101994
Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E., & Te Morenga, L. (2019). Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. The Lancet, 393(10170), 434–445. https://doi.org/10.1016/S0140-6736(18)31809-9
Rodriguez-Clare, A., & Dingel, J. (2021). The Effect Of Compensation, Leadership Style And Work Discipline On The Performance Of Hospital Employee In United States. 12(1), 33–47. https://medalionjournal.com/
Sahraei, M. A., Duman, H., Çodur, M. Y., & Eyduran, E. (2021). Prediction of transportation energy demand: Multivariate Adaptive Regression Splines. Energy, 224(12), 120090. https://doi.org/https://doi.org/10.1016/j.energy.2021.120090
Teo, K. K., & Rafiq, T. (2021). Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. In Canadian Journal of Cardiology (Vol. 37, Issue 5, pp. 733–743). Elsevier Inc. https://doi.org/10.1016/j.cjca.2021.02.009
Van Oort, S., Beulens, J. W. J., Van Ballegooijen, A. J., Grobbee, D. E., & Larsson, S. C. (2020). Association of Cardiovascular Risk Factors and Lifestyle Behaviors with Hypertension: A Mendelian Randomization Study. Hypertension, 76(6), 1971–1979. https://doi.org/10.1161/HYPERTENSIONAHA.120.15761
Vintilă, A.-M., & Dorobanțu, M. (2023). Hypertension in Young Adults. In M. Dorobantu, V. Voicu, G. Grassi, E. Agabiti-Rosei, & G. Mancia (Eds.), Hypertension and Heart Failure: Epidemiology, Mechanisms and Treatment (pp. 459–476). Springer International Publishing. https://doi.org/10.1007/978-3-031-39315-0_29
Virtanen, M., & Kivimaki, M. (2018). Long Working Hours and Risk of Cardiovascular Disease. Current Cardiology Reports, 20(11), 123. https://doi.org/10.1007/s11886-018-1049-9
WHO. (2023). Global report on hypertension The race against a silent killer. https://www.who.int/publications/i/item/9789240081062
Yang, B.-Y., Fan, S., Thiering, E., Seissler, J., Nowak, D., Dong, G.-H., & Heinrich, J. (2020). Ambient air pollution and diabetes: A systematic review and meta-analysis. Environmental Research, 180, 108817. https://doi.org/10.1016/j.envres.2019.108817
Yuan, S., Yu, H. jie, Liu, M. wei, Tang, B. wen, Zhang, J., Gasevic, D., Larsson, S. C., & He, Q. qiang. (2020). Fat Intake and Hypertension Among Adults in China: The Modifying Effects of Fruit and Vegetable Intake. American Journal of Preventive Medicine, 58(2), 294–301. https://doi.org/10.1016/j.amepre.2019.09.004
Zhao, Q., Wu, Q., Zhong, H., Yan, B., Wu, J., & Guo, W. (2024). Association of dietary habits with body mass index and waist circumference, and their interaction effect on hypertension. Medicine (United States), 103(20), E38178. https://doi.org/10.1097/MD.0000000000038178
Zhou, B., Perel, P., Mensah, G., & Ezzati, M. (2021). Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nature Reviews Cardiology, 18(11), 785-802. https://doi.org/10.1038/s41569-021-00559-8
DOI: https://doi.org/10.31764/jtam.v9i2.28392
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Suliyanto, Toha Saifudin, Sheila Sevira Asteriska Naura, Sanda Insania Dewanty, Indana Zulfa Wulandari, Nabila Shafa Aflaha, Niswa Faizah Aulia

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: