Optimal Control Strategies for Syphilis and HIV/AIDS Coinfection Transmission with Cost-Effectiveness Analysis

Dwizani Vinoma Cahyona, Toni Bakhtiar, Jaharuddin Jaharuddin

Abstract


Syphilis and HIV/AIDS are global health problems with significant impacts on society. The combination of these two infections can worsen the prognosis of patients and increase the economic strain on the health system. This study aims to develop an optimal control model in managing the spread of syphilis and HIV/AIDS coinfection by considering HIV/AIDS treatment, syphilis treatment, and preventive measures through condom use as dynamic control variables. Pontryagin's maximum principle is used to derive the optimality conditions. To theoretically investigate the impact of the control measures, this study analyzed five strategies related to the implementation of these controls using Scilab-2024.0.0 for simulate and evaluate of their effectiveness. The simulation results show that the combination of three control interventions is more effective in decreasing the prevalence of syphilis and HIV/AIDS coinfection compared to the application of one type of control alone. This combination strategy significantly reduces the infection rate by up to 86.04%, emphasizing the importance of a multifaceted intervention approach rather than a single control measure. Furthermore, a cost-effectiveness analysis was conducted by comparing the costs and effectiveness of various control strategies to determine the most efficient and economically feasible option. The results of the comparison indicate that although integrated intervention is the most effective strategy in minimizing infection rates, a strategy that focuses only on preventive measures through the use of condoms is a more efficient option when considering the balance between budget limitations and control effectiveness.

Keywords


Coinfection; Cost-Effectiveness; HIV/AIDS; Optimal Control; Strategy; Syphilis.

Full Text:

DOWNLOAD [PDF]

References


Aavani, P., & Allen, L. J. S. (2019). The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection. Applied Mathematical Modelling, 75(5), 210–222. https://doi.org/10.1016/j.apm.2019.05.028

Adawiyah, R. A., Saweri, O. P. M., Boettiger, D. C., Applegate, T. l., Probandari, A., Guy, R., Guinnes, L., & Wiseman, V. (2021). The costs of scaling up HIV and syphilis testing in low- and middle-income countries: a systematic review. Health Policy and Planning, 36(6), 939–954. https://doi.org/10.1093/heapol/czab030

Adekola, H. A., Adekunle, I. A., Egberongbe, H. O., Onitilo, S. A., & Abdullahi, I. N. (2020). Mathematical modeling for infectious viral disease: The COVID-19 perspective. Journal of Public Affairs, 20(4), e2306. https://doi.org/10.1002/pa.2306

Agusto, F. B., & Leite, M. C. A. (2019). Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria. Infectious Disease Modelling, 4(17), 161–187. https://doi.org/10.1016/j.idm.2019.05.003

Asamoah, J. K. K., Okyere, E., Abidemi, A., Moore, S. E., Sun, G. Q., Jin, Z., Acheampong, E., & Gordon, J. F. (2022). Optimal control and comprehensive cost-effectiveness analysis for COVID-19. Results in Physics, 33(2), 105177. https://doi.org/10.1016/j.rinp.2022.105177

Athans, M., & Falb, P. L. (2007). Optimal Control: An Introduction to the Theory and Its Applications. Dover Publications. https://academic.oup.com/book/52861

Ayalew, M. B., Kumilachew, D., Belay, A., Getu, S., Teju, D., Endale, D., Tsegaye, Y., & Wale, Z. (2016). First-line antiretroviral treatment failure and associated factors in HIV patients at the University of Gondar Teaching Hospital, Gondar, Northwest Ethiopia. Dove Press Journal, 8(2), 141–146. https://doi.org/10.2147/HIV.S112048

Ayele, T. K., Goufo, E. F. D., & Mugisha, S. (2021). Mathematical modeling of HIV/AIDS with optimal control: A case study in Ethiopia. Results in Physics, 26(6), 104263. https://doi.org/10.1016/j.rinp.2021.104263

CDC. (2021). Syphilis among Persons with HIV Infection. Centers for Disease Control and Prevention. https://www.cdc.gov/std/treatment-guidelines/syphilis-hiv.htm

CDC. (2022). About HIV/AIDS. Centers for Disease Control and Prevention. https://www.cdc.gov/hiv/basics/whatishiv.html

Chazuka, Z., Madubueze, C. E., & Mathebula, D. (2024). Modelling and analysis of an HIV model with control strategies and cost-effectiveness. Results in Control and Optimization, 14(1), 100355. https://doi.org/10.1016/j.rico.2023.100355

Clement, M. E., Okeke, N. L., & Hicks, C. B. (2019). Treatment of syphilis: a systematic review. JAMA, 312(18), 1905–1917. https://doi.org/10.1001/jama.2014.13259

David, J. F., Lima, V. D., Zhu, J., & Brauer, F. (2020). A co-interaction model of HIV and syphilis infection among gay, bisexual and other men who have sex with men. Infectious Disease Modelling, 24(5), 855–870. https://doi.org/10.1016/j.idm.2020.10.008.

Dong, W., Zhou, C., Rou, K.-M., Wu, Z.-Y., Chen, J., Scott, S. R., Jia, M.-H., Zhou, Y.-J., & Chen, X. (2019). A community-based comprehensive intervention to reduce syphilis infection among low-fee female sex workers in China: a matched-pair, community-based randomized study. Infectious Diseases of Poverty, 8(97), 2–10. https://doi.org/https://doi.org/10.1186/s40249-019-0611-z

ELmojtaba, I. M., Al-Maqrashi, K., Al-Musalhi, F., & Al-Salti, N. (2024). Optimal control and cost effectiveness analysis of a Zika-Malaria co-infection model. Partial Differential Equations in Applied Mathematics, 11(4), 100754. https://doi.org/10.1016/j.padiff.2024.100754

Emvudu, Y., Bongor, D., & Koïna, R. (2016). Mathematical analysis of HIV / AIDS stochastic dynamic models. Applied Mathematical Modelling, 40(21–22), 9131–9151. https://doi.org/10.1016/j.apm.2016.05.007

Fan, L., Yu, A., Zhang, D., Wang, Z., & Ma, P. (2021). Consequences of HIV/syphilis co-infection on HIV viral load and immune response to antiretroviral therapy. Infection and Drug Resistance, 24(14), 2851–2862. https://doi.org/10.2147/IDR.S320648

Getaneh, Y., Getnet, F., Amogne, M. D., Liao, L., Yi, F., & Yiming Shao. (2023). Burden of hepatitis B virus and syphilis co-infections and its impact on HIV treatment outcome in Ethiopia: nationwide community-based study. Annals of Medicine, 55(2), 2239828. https://doi.org/https://doi.org/10.1080/07853890.2023.2239828

Ifeyinwa, M. H. (2020). Mathematical modelling of the transmission dynamics of syphilis disease using differential transformation method. Mathematical Modelling and Applications, 5(2), 47–54. https://doi.org/10.11648/j.mma.20200502.11

Jing, W., Ma, N., Liu, W., & Zhao, Y. (2021). The effect of public health awareness and behaviors on the transmission dynamics of syphilis in Northwest China, 2006-2018, based on a multiple-phases mathematical model. Infectious Disease Modelling, 6(10), 1092–1109. https://doi.org/10.1016/j.idm.2021.08.009

Kemenkes RI. (2016). Pedoman Nasional Penanganan Infeksi Menular Seksual. Kementerian Kesehatan Republik Indonesia.

Kemenkes RI. (2023). Kasus HIV dan Sifilis Meningkat, Penularan Didominasi Ibu Rumah Tangga. Kementerian Kesehatan Republik Indonesia. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230508/5742944/kasus-hiv-dan-sifilis-meningkat-penularan-didominasi-ibu-rumah-tangga/

Kotsafti, O., Paparizos, V., Kourkounti, S., Chatziioannou, A., Nicolaidou, E., Kapsimali, V., & Antoniou, C. (2016). Early syphilis affects markers of HIV infection. International Journal of STD & AIDS, 27(9), 739–745. https://doi.org/10.1177/0956462415592326

Lee, N., Chen, Y., Liu, H., Li, C., Ko, W., & Ko, N. (2020). Increased repeat syphilis among HIV-infected patients: a Nationwide Population-Based Cohort Study in Taiwan. Medicine (Baltimore), 99(28), e21132. https://doi.org/10.1097/MD.0000000000021132

Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological Models. In New York: Taylor & Francis Group (First Edit). Chapman and Hall/CRC. https://doi.org/10.1201/9781420011418

Mahmud, S., Mohsin, M., Muyeed, A., Islam, M. M., Hossain, S., & Islam, A. (2023). Prevalence of HIV and syphilis and their co-infection among men having sex with men in Asia: A systematic review and meta-analysis. Heliyon, 9(3), e13947. https://doi.org/10.1016/j.heliyon.2023.e13947

Mata-Marín, J. A., Sandoval-Sánchez, J. J., Huerta-García, G., Arroyo-Anduiza, C. I., Alcalá-Martínez, E., Mata-Marín, L. A., Sandoval-Ramirez, J. L., & Gaytán- Martínez, J. (2015). Prevalence of antibodies against Treponema pallidum among HIV-positive patients in a tertiary care hospital in Mexico. International Journal of STD & AIDS, 26(2), 81–85. https://doi.org/10.1177/0956462414530888

Momoh, A. A., Bala, Y., Washachi, D. J., & Dethie, D. (2021). Mathematical analysis and optimal control interventions for sex structured syphilis model with three phases of infection and loss of immunity. Advances in Difference Equations, 285(1), 1–26. https://doi.org/10.1186/s13662-021-03432-7

Nainggolan, J., Ansori, M. F., & Hengki, T. (2025). An optimal control model with sensitivity analysis for COVID-19 transmission using logistic recruitment rate. Healthcare Analytics, 7(11), 100375. https://doi.org/https://doi.org/10.1016/j.health.2024.100375

Nwankwo, A., & Okuonghae, D. (2018). Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis. Bulletin of Mathematical Biology, 80(3), 437–492. https://doi.org/10.1007/s11538-017-0384-0

Omame, A., Okuonghae, D., Nwafor, U. E., & Odionyenma, B. U. (2021). A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis. International Journal of Biomathematics, 14(07), 2150050. https://doi.org/10.1142/S1793524521500509

Ren, M., Dashwood, T., & Walmsley, S. (2021). The intersection of HIV and syphilis: update on the key considerations in testing and management. Current HIV/AIDS Reports, 18(4), 280–288. https://doi.org/10.1007/s11904-021-00564-z

Sarigül, F., Sayan, M., Inan, D., Deveci, A., Ceran, N., & Çelen, K. (2019). Current status of HIV/AIDS-syphilis co-infections: A Retrospective Multicentre Study. Central European Journal of Public Health, 27(3), 223–228. https://doi.org/10.21101/cejph.a5467

Tao, L., Liu, M., Li, S., Liu, J., & Wang, N. (2018). Condom use in combination with ART can reduce HIV incidence and mortality of PLWHA among MSM: a study from Beijing, China. BMC Infectious Diseases, 18(124), 2–11. https://doi.org/https://doi.org/10.1186/s12879-018-3026-8

Tu, P. N. V. (1984). Introductory Optimization Dynamics: Optimal Control with Economics and Management Science Applications. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-662-00719-8

Wang, L. c., Gao, S., Li, X. Z., & Martcheva, M. (2023). Modeling syphilis and HIV coinfection: A case study in the USA. Bulletin of Mathematical Biology, 85(3), 20. https://doi.org/10.1007/s11538-023-01123-w

WHO. (2023a). HIV and AIDS. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/hiv-aids

WHO. (2023b). Syphilis. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/syphilis




DOI: https://doi.org/10.31764/jtam.v9i2.28571

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Dwizani Vinoma Cahyona, Toni Bakhtiar, Jaharuddin Jaharuddin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: