Optimal Control Strategies for Syphilis and HIV/AIDS Coinfection Transmission with Cost-Effectiveness Analysis
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aavani, P., & Allen, L. J. S. (2019). The role of CD4 T cells in immune system activation and viral reproduction in a simple model for HIV infection. Applied Mathematical Modelling, 75(5), 210–222. https://doi.org/10.1016/j.apm.2019.05.028
Adawiyah, R. A., Saweri, O. P. M., Boettiger, D. C., Applegate, T. l., Probandari, A., Guy, R., Guinnes, L., & Wiseman, V. (2021). The costs of scaling up HIV and syphilis testing in low- and middle-income countries: a systematic review. Health Policy and Planning, 36(6), 939–954. https://doi.org/10.1093/heapol/czab030
Adekola, H. A., Adekunle, I. A., Egberongbe, H. O., Onitilo, S. A., & Abdullahi, I. N. (2020). Mathematical modeling for infectious viral disease: The COVID-19 perspective. Journal of Public Affairs, 20(4), e2306. https://doi.org/10.1002/pa.2306
Agusto, F. B., & Leite, M. C. A. (2019). Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria. Infectious Disease Modelling, 4(17), 161–187. https://doi.org/10.1016/j.idm.2019.05.003
Asamoah, J. K. K., Okyere, E., Abidemi, A., Moore, S. E., Sun, G. Q., Jin, Z., Acheampong, E., & Gordon, J. F. (2022). Optimal control and comprehensive cost-effectiveness analysis for COVID-19. Results in Physics, 33(2), 105177. https://doi.org/10.1016/j.rinp.2022.105177
Athans, M., & Falb, P. L. (2007). Optimal Control: An Introduction to the Theory and Its Applications. Dover Publications. https://academic.oup.com/book/52861
Ayalew, M. B., Kumilachew, D., Belay, A., Getu, S., Teju, D., Endale, D., Tsegaye, Y., & Wale, Z. (2016). First-line antiretroviral treatment failure and associated factors in HIV patients at the University of Gondar Teaching Hospital, Gondar, Northwest Ethiopia. Dove Press Journal, 8(2), 141–146. https://doi.org/10.2147/HIV.S112048
Ayele, T. K., Goufo, E. F. D., & Mugisha, S. (2021). Mathematical modeling of HIV/AIDS with optimal control: A case study in Ethiopia. Results in Physics, 26(6), 104263. https://doi.org/10.1016/j.rinp.2021.104263
CDC. (2021). Syphilis among Persons with HIV Infection. Centers for Disease Control and Prevention. https://www.cdc.gov/std/treatment-guidelines/syphilis-hiv.htm
CDC. (2022). About HIV/AIDS. Centers for Disease Control and Prevention. https://www.cdc.gov/hiv/basics/whatishiv.html
Chazuka, Z., Madubueze, C. E., & Mathebula, D. (2024). Modelling and analysis of an HIV model with control strategies and cost-effectiveness. Results in Control and Optimization, 14(1), 100355. https://doi.org/10.1016/j.rico.2023.100355
Clement, M. E., Okeke, N. L., & Hicks, C. B. (2019). Treatment of syphilis: a systematic review. JAMA, 312(18), 1905–1917. https://doi.org/10.1001/jama.2014.13259
David, J. F., Lima, V. D., Zhu, J., & Brauer, F. (2020). A co-interaction model of HIV and syphilis infection among gay, bisexual and other men who have sex with men. Infectious Disease Modelling, 24(5), 855–870. https://doi.org/10.1016/j.idm.2020.10.008.
Dong, W., Zhou, C., Rou, K.-M., Wu, Z.-Y., Chen, J., Scott, S. R., Jia, M.-H., Zhou, Y.-J., & Chen, X. (2019). A community-based comprehensive intervention to reduce syphilis infection among low-fee female sex workers in China: a matched-pair, community-based randomized study. Infectious Diseases of Poverty, 8(97), 2–10. https://doi.org/https://doi.org/10.1186/s40249-019-0611-z
ELmojtaba, I. M., Al-Maqrashi, K., Al-Musalhi, F., & Al-Salti, N. (2024). Optimal control and cost effectiveness analysis of a Zika-Malaria co-infection model. Partial Differential Equations in Applied Mathematics, 11(4), 100754. https://doi.org/10.1016/j.padiff.2024.100754
Emvudu, Y., Bongor, D., & Koïna, R. (2016). Mathematical analysis of HIV / AIDS stochastic dynamic models. Applied Mathematical Modelling, 40(21–22), 9131–9151. https://doi.org/10.1016/j.apm.2016.05.007
Fan, L., Yu, A., Zhang, D., Wang, Z., & Ma, P. (2021). Consequences of HIV/syphilis co-infection on HIV viral load and immune response to antiretroviral therapy. Infection and Drug Resistance, 24(14), 2851–2862. https://doi.org/10.2147/IDR.S320648
Getaneh, Y., Getnet, F., Amogne, M. D., Liao, L., Yi, F., & Yiming Shao. (2023). Burden of hepatitis B virus and syphilis co-infections and its impact on HIV treatment outcome in Ethiopia: nationwide community-based study. Annals of Medicine, 55(2), 2239828. https://doi.org/https://doi.org/10.1080/07853890.2023.2239828
Ifeyinwa, M. H. (2020). Mathematical modelling of the transmission dynamics of syphilis disease using differential transformation method. Mathematical Modelling and Applications, 5(2), 47–54. https://doi.org/10.11648/j.mma.20200502.11
Jing, W., Ma, N., Liu, W., & Zhao, Y. (2021). The effect of public health awareness and behaviors on the transmission dynamics of syphilis in Northwest China, 2006-2018, based on a multiple-phases mathematical model. Infectious Disease Modelling, 6(10), 1092–1109. https://doi.org/10.1016/j.idm.2021.08.009
Kemenkes RI. (2016). Pedoman Nasional Penanganan Infeksi Menular Seksual. Kementerian Kesehatan Republik Indonesia.
Kemenkes RI. (2023). Kasus HIV dan Sifilis Meningkat, Penularan Didominasi Ibu Rumah Tangga. Kementerian Kesehatan Republik Indonesia. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230508/5742944/kasus-hiv-dan-sifilis-meningkat-penularan-didominasi-ibu-rumah-tangga/
Kotsafti, O., Paparizos, V., Kourkounti, S., Chatziioannou, A., Nicolaidou, E., Kapsimali, V., & Antoniou, C. (2016). Early syphilis affects markers of HIV infection. International Journal of STD & AIDS, 27(9), 739–745. https://doi.org/10.1177/0956462415592326
Lee, N., Chen, Y., Liu, H., Li, C., Ko, W., & Ko, N. (2020). Increased repeat syphilis among HIV-infected patients: a Nationwide Population-Based Cohort Study in Taiwan. Medicine (Baltimore), 99(28), e21132. https://doi.org/10.1097/MD.0000000000021132
Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological Models. In New York: Taylor & Francis Group (First Edit). Chapman and Hall/CRC. https://doi.org/10.1201/9781420011418
Mahmud, S., Mohsin, M., Muyeed, A., Islam, M. M., Hossain, S., & Islam, A. (2023). Prevalence of HIV and syphilis and their co-infection among men having sex with men in Asia: A systematic review and meta-analysis. Heliyon, 9(3), e13947. https://doi.org/10.1016/j.heliyon.2023.e13947
Mata-Marín, J. A., Sandoval-Sánchez, J. J., Huerta-García, G., Arroyo-Anduiza, C. I., Alcalá-Martínez, E., Mata-Marín, L. A., Sandoval-Ramirez, J. L., & Gaytán- Martínez, J. (2015). Prevalence of antibodies against Treponema pallidum among HIV-positive patients in a tertiary care hospital in Mexico. International Journal of STD & AIDS, 26(2), 81–85. https://doi.org/10.1177/0956462414530888
Momoh, A. A., Bala, Y., Washachi, D. J., & Dethie, D. (2021). Mathematical analysis and optimal control interventions for sex structured syphilis model with three phases of infection and loss of immunity. Advances in Difference Equations, 285(1), 1–26. https://doi.org/10.1186/s13662-021-03432-7
Nainggolan, J., Ansori, M. F., & Hengki, T. (2025). An optimal control model with sensitivity analysis for COVID-19 transmission using logistic recruitment rate. Healthcare Analytics, 7(11), 100375. https://doi.org/https://doi.org/10.1016/j.health.2024.100375
Nwankwo, A., & Okuonghae, D. (2018). Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the presence of treatment for syphilis. Bulletin of Mathematical Biology, 80(3), 437–492. https://doi.org/10.1007/s11538-017-0384-0
Omame, A., Okuonghae, D., Nwafor, U. E., & Odionyenma, B. U. (2021). A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis. International Journal of Biomathematics, 14(07), 2150050. https://doi.org/10.1142/S1793524521500509
Ren, M., Dashwood, T., & Walmsley, S. (2021). The intersection of HIV and syphilis: update on the key considerations in testing and management. Current HIV/AIDS Reports, 18(4), 280–288. https://doi.org/10.1007/s11904-021-00564-z
Sarigül, F., Sayan, M., Inan, D., Deveci, A., Ceran, N., & Çelen, K. (2019). Current status of HIV/AIDS-syphilis co-infections: A Retrospective Multicentre Study. Central European Journal of Public Health, 27(3), 223–228. https://doi.org/10.21101/cejph.a5467
Tao, L., Liu, M., Li, S., Liu, J., & Wang, N. (2018). Condom use in combination with ART can reduce HIV incidence and mortality of PLWHA among MSM: a study from Beijing, China. BMC Infectious Diseases, 18(124), 2–11. https://doi.org/https://doi.org/10.1186/s12879-018-3026-8
Tu, P. N. V. (1984). Introductory Optimization Dynamics: Optimal Control with Economics and Management Science Applications. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-662-00719-8
Wang, L. c., Gao, S., Li, X. Z., & Martcheva, M. (2023). Modeling syphilis and HIV coinfection: A case study in the USA. Bulletin of Mathematical Biology, 85(3), 20. https://doi.org/10.1007/s11538-023-01123-w
WHO. (2023a). HIV and AIDS. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/hiv-aids
WHO. (2023b). Syphilis. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/syphilis
DOI: https://doi.org/10.31764/jtam.v9i2.28571
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dwizani Vinoma Cahyona, Toni Bakhtiar, Jaharuddin Jaharuddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: