Control Strategies for HIV/AIDS-Hepatitis B Coinfection using Optimal Control Approach and Cost-Effectiveness Analysis

Winda Nur Annisa, Toni Bakhtiar, Bib Paruhum Silalahi

Abstract


HIV/AIDS and Hepatitis B are infectious diseases caused by viruses, sharing similar transmission mechanisms. This study seeks to determine the most effective and cost-efficient strategies for controlling the spread of these diseases by utilizing a modified HIV/AIDS-Hepatitis B coinfection model with various control variables. The model divides the total population into nine subpopulations, each representing a specific disease state. Based on these classifications, the model incorporates four key control variables, namely Hepatitis B vaccination program, Hepatitis B treatment, HIV/AIDS treatment, and public health education program. The research employs optimal control theory and the Pontryagin Maximum Principle to address the optimal control problem to minimize infection rates and implementation costs over a specific periode. The Hamilton function integritas the dynamic system and cost function. The model is analyzed through simulations using parameter values from previous studies, then optimizing control variables to generate a numerically solved system of differential equations that uses Scilab 2024 software. Simulation result show that the optimal combination of four control strategies reduces HIV/AIDS-Hepatitis B infection by 79,2% in under ten years. Furthermore, the cost-effectiveness of different strategies is evaluated using the Average Cost-Effectiveness Ratio (ACER) and Incremental Cost-Effectiveness Ratio (ICER) indicates that single control strategies are more cost-efficient, while combining all four strategies is more expensive. However, successful implementation depends on financial constraints (limited vaccination and ARV treatment), healthcare infrastructure (availability of testing facilities), and public compliance with health education programs. Consequently, the proposed strategies are recommended for policymakers, with consideration of associated costs to ensure feasibility.

Keywords


Coinfection; Cost-Effectiveness Analysis; HIV/AIDS; Hepatitis B; Optimal Control; Strategy.

Full Text:

DOWNLOAD [PDF]

References


Anwarud, D., Yongjin, L., & Ali, S. M. (2021). The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control. J Syst Sci Complex, 34(4), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0

Berhe, H. W., Makinde, O. D., & Theuri, D. M. (2019). Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis. Applied Mathematics and Computation, 347(C), 903–921. https://doi.org/10.1016/j.amc.2018.11.049

Bonyah, E., Khan, M. A., Okosun, K. O., & Gómez-Aguilar, J. F. (2019). On the co-infection of dengue fever and Zika virus. Optimal Control Applications and Methods, 40(3), 394–421. https://doi.org/10.1002/oca.2483

Bowong, S., & Kurths, J. (2019). Modelling tuberculosis and hepatitis B co-infections. Mathematical Modelling of Natural Phenomena, 5(6), 196–242. https://doi.org/10.1051/mmnp/20105610

Chazuka, Z., Chukwu, C. W., & Moremedi, G. M. (2023). On Modelling the in-Host Dynamics of Hiv/Hpv Co-Infection in the Human Population. Communications in Mathematical Biology and Neuroscience, 2023(79), 1–29. https://doi.org/10.28919/cmbn/7912

Echeng, B. (2020). Optimal Control Dynamics : Multi-therapies with Dual Immune Response for Treatment of Dual Delayed HIV-HBV Infections. I.J. Mathematical Sciences and Computing, 2(6), 18–60. https://doi.org/10.5815/ijmsc.2020.02.02

Endashaw, E. E., & Mekonnen, T. T. (2022). Modeling the Effect of Vaccination and Treatment on the Transmission Dynamics of Hepatitis B Virus and HIV / AIDS Coinfection. Hindawi: Journal of Applied Mathemmatics, 2022(1), 5246762. https://doi.org/https://doi.org/10.1155/2022/5246762

Gurmu, E. D., Bole, B. K., & Koya, P. R. (2021). Optimal Control Strategy on the Transmission Dynamics of Human Papillomavirus (HPV) and Human Immunodeficiency Viruses (HIV) Coinfection. International Journal of Research in Industrial Engineering, 10(4), 318–331. https://doi.org/10.22105/riej.2021.294463.1234

Kamyad, A. V., Akbari, R., Heydari, A. A., & Heydari, A. (2014). Mathematical Modeling of Transmission Dynamics and Optimal Control of Vaccination and Treatment for Hepatitis B Virus. Hindawi: Computational and Mathematical Methods in Medicine, 2014(1), 80–90. https://doi.org/http://dx.doi.org/10.1155/2014/475451

Kemenkes RI. (2023). Hepatitis B Banyak di Tularkan dari Ibu ke Anak. Kementrian Kesehatan Republik Indonesia. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230726/4343580/hepatitis-b-banyak-ditularkan-dari-ibu-ke-anak/

Lenhart, S., & Workman, J. T. (2007). Optimal Control Applied to Biological Models. In New York: Taylor & Francis Group (First Edit). Chapman and Hall/CRC. https://doi.org/10.1201/9781420011418

Liu, Y., Lu, L., Wang, Y. Y., Wilkinson, M. R., Ren, Y. M., Wang, C. C., Zhang, F. Bin, Gao, J., & Liu, S. (2020). Effects of health education on HIV/AIDS related knowledge among firsyear university students in China. African Health Sciences, 20(4), 1582–1590. https://doi.org/10.4314/ahs.v20i4.10

Ma, L., Wang, W., Grange, J. M. Le, Wang, X., Du, S., Li, C., Wei, J., & Zhang, J. N. (2020). Coinfection of SARS-CoV-2 and other respiratory pathogens. Infection and Drug Resistance, 2020(13), 3045–3053. https://doi.org/10.2147/IDR.S267238

Marsudi, Hidayat, N., & Edy Wibowo, R. B. (2019). Optimal Control and Cost-Effectiveness Analysis of HIV Model with Educational Campaigns and Therapy. Mathematics: MJIAM, 35(4), 123–138. https://doi.org/10.11113/matematika.v35.n4.1267

Mphahlele, M. J. (2015). Impact of HIV co-infection on hepatitis B prevention and control : a view from sub-Saharan Africa Impact of HIV co-infection on hepatitis B prevention and control : a view from sub-Saharan Africa. Southern African Journal of Epidemiology and Infection, 23(1), 14–18. https://doi.org/10.1080/10158782.2008.11441294

Nagao, Y., Kimura, T., Tomooka, K., & Wakita, H. (2022). Education and Awareness Activities Regarding Hepatitis B and C Among Japanese Dental Health Workers in the Oita Prefecture. Cureus, 14(9), 1–11. https://doi.org/10.7759/cureus.29670

Nah, K., Nishiura, H., Tsuchiya, N., Sun, X., Asai, Y., & Imamura, A. (2017). Test-and-treat approach to HIV / AIDS : a primer for mathematical modeling. Theoretical Biology and Medical Modelling, 14(16), 1–11. https://doi.org/10.1186/s12976-017-0062-9

Nainggolan, J. (2017). Kontrol Pengobatan Optimal Pada Model Penyebaran Tuberkulosis Tipe Seit. E-Jurnal Matematika, 6(2), 137. https://doi.org/10.24843/mtk.2017.v06.i02.p158

Omale, D. (2020). Mathematical Modelling on The Control of HIV/AIDS with Campaign on Vaccination and Therapy. ITM Web of Conferences, 31(03003), 1–8. https://doi.org/10.1051/itmconf/20203103003

Omondi, E. O., Mbogo, R. W., & Luboobi, L. S. (2019). A mathematical modelling study of HIV infection in two heterosexual age groups in Kenya. Infectious Disease Modelling, 4(21), 83–98. https://doi.org/10.1016/j.idm.2019.04.003

Rose, G. R. (2015). Numerical Methods for Solving Optimal Control Problems [University of Tennessee]. https://trace.tennessee.edu/cgi/viewcontent.cgi?article=4704&context=utk_gradthes

Shimelis, T., Tassachew, Y., Tadewos, A., Hordofa, M. W., Amsalu, A., Tadesse, B. T., & Tadesse, E. (2022). Coinfections with hepatitis B and C virus and syphilis among HIV-infected clients in Southern Ethiopia : a cross-sectional study Coinfections with hepatitis B and C virus and syphilis among HIV-infected clients in Southern Ethiopia : a cross-sectional stu. HIV/AIDS-Reserch and Palliative Care, 2017(9), 203–210. https://doi.org/10.2147/HIV.S150795

Teklu, S. W., & Mekonnen, T. T. (2021). HIV/AIDS-Pneumonia Coinfection Model with Treatment at Each Infection Stage: Mathematical Analysis and Numerical Simulation. Journal of Applied Mathematics, 2021(10), 1–21. https://doi.org/10.1155/2021/5444605

Tilahun, G. T., Makinde, O. D., & Malonza, D. (2018). Co-dynamics of Pneumonia and Typhoid fever diseases with cost effective optimal control analysis. Applied Mathematics and Computation, 316(C), 438–459. https://doi.org/10.1016/j.amc.2017.07.063

Weldemhret, L. (2022). Epidemiology and Challenges of HBV / HIV Co- Infection Amongst HIV-Infected Patients in Endemic Areas : Review. HIV/AIDS - Research and Palliative Care ISSN:, 13(5), 485–490. https://doi.org/10.2147/HIV.S273649

WHO. (2023a). Hepatitis B. World Health Organisasion. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b

WHO. (2023b). HIV and AIDS. World Health Organisasion. https://www.who.int/news-room/fact-sheets/detail/hiv-aids?gad_source=1&gclid=EAIaIQobChMItInopIXliwMV28o8Ah2FjBu4EAAYASAAEgIpNPD_BwE

Wodajo, F. A., & Mekonnen, T. T. (2022). Effect of Intervention of Vaccination and Treatment on the Transmission Dynamics of HBV Disease : A Mathematical. Jurnal of Mathematics, 2022(13), 1–17. https://doi.org/https://doi.org/10.1155/2022/9968832

Yuan, Y., & Li, N. (2022). Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness. Physica A: Statistical Mechanics and Its Applications, 603(C), 127804. https://doi.org/10.1016/j.physa.2022.127804

Zada, I., Naeem Jan, M., Ali, N., Alrowail, D., Sooppy Nisar, K., & Zaman, G. (2021). Mathematical analysis of hepatitis B epidemic model with optimal control. Advances in Difference Equations, 2021(451), 1–29. https://doi.org/10.1186/s13662-021-03607-2




DOI: https://doi.org/10.31764/jtam.v9i2.29601

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Winda Nur Annisa, Toni Bakhtiar, Bib Paruhum Silalahi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: