Analyzing Multiclass Land Cover and Spatial Point Patterns on Sentinel-2 Imagery Using Machine Learning and Deep Learning
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Abbas, H., Tao, W., Khan, G., Alrefaei, A. F., Iqbal, J., Albeshr, M. F., & Kulsoom, I. (2023). Multilayer perceptron and Markov Chain analysis based hybrid-approach for predicting land use land cover change dynamics with Sentinel-2 imagery. Geocarto International, 38(1), 1–27. https://doi.org/10.1080/10106049.2023.2256297
Agency, E. S. (2024). Sentinel-2. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2
Aidi, M. N. (2013). Konfigurasi Titik dalam Ruang Kajian Teoretis, Simulasi dan Kasus. Institut Pertanian Bogor. https://repository.ipb.ac.id/jspui/bitstream/123456789/68973/1/Gabungan konfigurasi titik ruang.pdf
Alber, M., Zimmert, J., Dogan, U., & Kloft, M. (2017). Distributed optimization of multi-class SVMs. PLoS ONE, 12(6), 1–18. https://doi.org/10.1371/journal.pone.0178161
Alwazy, A. S. H., Buyrukoğlu, G., Buyrukoğlu, S., & Baker, M. R. (2025). Evaluating machine learning and statistical learning techniques for cancer classification and diagnosis. Iran Journal of Computer Science, 1–20. https://doi.org/10.1007/s42044-025-00233-z
Athmaja, S., Hanumanthappa, M., & Kavitha, V. (2017). A survey of machine learning algorithms for big data analytics. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1–4. https://doi.org/10.1109/ICIIECS.2017.8276028
Bayas, S., Sawant, S., Dhondge, I., Kankal, P., & Joshi, A. (2022). Land Use Land Cover Classification Using Different ML Algorithms on Sentinel-2 Imagery. Lecture Notes in Electrical Engineering, 858, 761–777. https://doi.org/10.1007/978-981-19-0840-8_59
Cabernard, L., Pfister, S., & Hellweg, S. (2024). Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nature Sustainability, 7(11), 1512–1524. https://doi.org/10.1038/s41893-024-01433-4
Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. ACM International Conference Proceeding Series, 148, 161–168. https://doi.org/10.1145/1143844.1143865
Elachi, C., & Zyl, J. (2021). Introduction to the Physics and Techniques of Remote Sensing (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119523048
Erlin, E., Rahmiati, R., & Rio, U. (2014). Two Text Classifiers in Online Discussion: Support Vector Machine vs Back-Propagation Neural Network. TELKOMNIKA (Telecommunication Computing Electronics and Control), 12(1), 189. https://doi.org/10.12928/TELKOMNIKA.v12i1.1798
Galindo, V., Giraldo, C., Lavelle, P., Armbrecht, I., & Fonte, S. J. (2022). Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere, 13(3), e3979. https://doi.org/10.1002/ecs2.3979
Ghoggali, N., & Melgani, F. (2009). Automatic ground-truth validation with genetic algorithms for multispectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2172–2181. https://doi.org/10.1109/TGRS.2009.2013693
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Elsevier. https://doi.org/10.1016/C2009-0-61819-5
Hao, L., Qingdong, S., Imin, B., & Kasim, N. (2020). Methodology for optimizing quadrat size in sparse vegetation surveys: A desert case study from the Tarim Basin. PLOS ONE, 15(8), e0235469. https://doi.org/10.1371/journal.pone.0235469
Hapsary, M. S. A., Subiyanto, S., & Firdaus, H. S. (2021). Analisis Prediksi Perubahan Penggunaan Lahan dengan Pendekatan Artificial Neural Network dan Regresi Logistik di Kota Balikpapan. Jurnal Geodesi Undip, 10(2), 88–97. https://doi.org/10.14710/jgundip.2021.30637
Ifriza, Y. N., & Sam’an, M. (2021). Performance comparison of support vector machine and gaussian naive bayes classifier for youtube spam comment detection. Journal of Soft Computing Exploration, 2(2), 93–98. https://doi.org/10.52465/joscex.v2i2.42
Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166
Jayaraman, S., Thangaraj, V., & Esakkirajan, S. (2009). Digital Image Processing (1st ed.). Tata McGraw Hill Education.
Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining, 15(4), 531–538. https://doi.org/10.1002/sam.11583
Kaul, A., & Raina, S. (2022). Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurrency and Computation: Practice and Experience, 34(15), 1–35. https://doi.org/10.1002/cpe.6945
Krebs, R., Bagui, S. S., Mink, D., & Bagui, S. C. (2024). Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset. Electronics, 13(19), 3916. https://doi.org/10.3390/electronics13193916
Li, Y., & Zhang, L. (2024). A Novel Loss Function-based Support Vector Machine for Binary Classification. ArXiv, 1–17. https://doi.org/10.48550/arXiv.2403.16654
Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation (7th ed.). John Wiley & Sons.
Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. https://doi.org/10.1016/j.patcog.2019.02.023
Mandanici, E., & Bitelli, G. (2016). Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sensing, 8(12), 1–10. https://doi.org/10.3390/rs8121014
Millennianita, F., Athiyah, U., & Muhammad, A. W. (2024). Comparison of Naïve Bayes Classifier and Support Vector Machine Methods for Sentiment Classification of Responses to Bullying Cases on Twitter. Journal of Mechatronics and Artificial Intelligence, 1(1), 11–26. https://doi.org/10.17509/jmai.v1i1.69959
Phiri, D., & Morgenroth, J. (2017). Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 9(9), 967. https://doi.org/10.3390/rs9090967
Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12(14), 2291. https://doi.org/10.3390/rs12142291
Raschka, S. (2017). Naive Bayes and Text Classification I - Introduction and Theory. ArXiv, 1–20. https://doi.org/10.48550/arXiv.1410.5329
Rifkin, R., & Klautau, A. (2004). In Defense of One-Vs-All Classification. Journal of Machine Learning Research, 5, 101–141. https://dl.acm.org/doi/10.5555/1005332.1005336
Shajari, H., & Rangarajan, A. (2020). A Unified Framework for Multiclass and Multilabel Support Vector Machines. ArXiv, 1–27. https://doi.org/10.48550/arXiv.2003.11197
Sivakumar, M., Parthasarathy, S., & Padmapriya, T. (2024). Trade-off between training and testing ratio in machine learning for medical image processing. PeerJ Computer Science, 10, 1–17. https://doi.org/10.7717/peerj-cs.2245
Su, Z. H., Lin, C., Ma, R. H., Luo, J. H., & Liang, Q. O. (2015). Effect of land use change on lake water quality in different buffer zones. Applied Ecology and Environmental Research, 13(3), 639–653. https://doi.org/10.15666/aeer/1303_639653
Thakrar, S. K., Johnson, J. A., & Polasky, S. (2024). Land-Use Decisions Have Substantial Air Quality Health Effects. Environmental Science & Technology, 58(1), 381–390. https://doi.org/10.1021/acs.est.3c02280
Urso, A., Fiannaca, A., La Rosa, M., Ravì, V., & Rizzo, R. (2019). Data Mining: Classification and Prediction. In Encyclopedia of Bioinformatics and Computational Biology (Vol. 1, pp. 384–402). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20461-5
Varoquaux, G. (2018). Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage, 180(Part A), 68–77. https://doi.org/10.1016/j.neuroimage.2017.06.061
Wang, S., & Dai, L. (2024). Effect of Quadrat Shape on Spatial Point Pattern Performance of Haloxylon ammodendron. Open Journal of Ecology, 14(01), 66–76. https://doi.org/10.4236/oje.2024.141004
Williams, J. J., & Newbold, T. (2020). Local climatic changes affect biodiversity responses to land use: A review. Diversity and Distributions, 26(1), 76–92. https://doi.org/10.1111/ddi.12999
Zhang, T., Su, J., Xu, Z., Luo, Y., & Li, J. (2021). Sentinel-2 Satellite Imagery for Urban Land Cover Classification by Optimized Random Forest Classifier. Applied Sciences, 11(2), 543. https://doi.org/10.3390/app11020543
Zhang, Z., Zhang, F., Du, J., Chen, D., & Zhang, W. (2021). Impacts of land use at multiple buffer scales on seasonal water quality in a reticular river network area. PLOS ONE, 16(1), 1–20. https://doi.org/10.1371/journal.pone.0244606
DOI: https://doi.org/10.31764/jtam.v9i2.29683
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muna Faizatun Nabilah, Achmad Fauzan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: