Analyzing Multiclass Land Cover and Spatial Point Patterns on Sentinel-2 Imagery Using Machine Learning and Deep Learning

Muna Faizatun Nabilah, Achmad Fauzan

Abstract


Land cover conversion around educational centers, such as universities, is an inevitable consequence of increasing urban activity. The development of boarding houses, commercial zones, and other infrastructure often follows the expansion of academic institutions. To support sustainable spatial planning, early identification of land cover and analysis of spatial distribution patterns are crucial for zoning regulation and infrastructure management. This study focuses on classifying land cover and analyzing spatial patterns around Universitas Riau (UNRI) using Sentinel-2 satellite imagery with a 10-meter spatial resolution. The research applied a supervised classification approach, utilizing spectral bands—specifically Near-Infrared (NIR) and Short-Wave Infrared (SWIR)—as explanatory variables. The response variable was land cover, categorized into vegetation, non-vegetation, and water. Three machine learning models—Support Vector Machine (SVM), Naïve Bayes (NB), and Backpropagation Neural Network (BNN)—were compared based on overall accuracy and the Kappa coefficient. The models were trained and tested using a stratified 80-20 data split to ensure a balanced evaluation. Among the models, SVM demonstrated the highest accuracy, achieving an average of 91.15% in 2022 and 83.90% in 2023 with minimal variance, confirming its reliability for land cover classification. Spatially, non-vegetation areas were concentrated near major access routes and facilities, highlighting the influence of infrastructure development on land conversion. The study also identified potential growth zones within a 3–5 km radius from UNRI, emphasizing the need for anticipatory and sustainable land use policies. These findings support the formulation of spatial strategies aligned with Law No. 26 of 2007 on Spatial Planning and offer valuable insights for guiding urban development around academic hubs.

Keywords


Classification; Sentinel-2; Land Use; Point Distribution Pattern.

Full Text:

DOWNLOAD [PDF]

References


Abbas, H., Tao, W., Khan, G., Alrefaei, A. F., Iqbal, J., Albeshr, M. F., & Kulsoom, I. (2023). Multilayer perceptron and Markov Chain analysis based hybrid-approach for predicting land use land cover change dynamics with Sentinel-2 imagery. Geocarto International, 38(1), 1–27. https://doi.org/10.1080/10106049.2023.2256297

Agency, E. S. (2024). Sentinel-2. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2

Aidi, M. N. (2013). Konfigurasi Titik dalam Ruang Kajian Teoretis, Simulasi dan Kasus. Institut Pertanian Bogor. https://repository.ipb.ac.id/jspui/bitstream/123456789/68973/1/Gabungan konfigurasi titik ruang.pdf

Alber, M., Zimmert, J., Dogan, U., & Kloft, M. (2017). Distributed optimization of multi-class SVMs. PLoS ONE, 12(6), 1–18. https://doi.org/10.1371/journal.pone.0178161

Alwazy, A. S. H., Buyrukoğlu, G., Buyrukoğlu, S., & Baker, M. R. (2025). Evaluating machine learning and statistical learning techniques for cancer classification and diagnosis. Iran Journal of Computer Science, 1–20. https://doi.org/10.1007/s42044-025-00233-z

Athmaja, S., Hanumanthappa, M., & Kavitha, V. (2017). A survey of machine learning algorithms for big data analytics. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 1–4. https://doi.org/10.1109/ICIIECS.2017.8276028

Bayas, S., Sawant, S., Dhondge, I., Kankal, P., & Joshi, A. (2022). Land Use Land Cover Classification Using Different ML Algorithms on Sentinel-2 Imagery. Lecture Notes in Electrical Engineering, 858, 761–777. https://doi.org/10.1007/978-981-19-0840-8_59

Cabernard, L., Pfister, S., & Hellweg, S. (2024). Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nature Sustainability, 7(11), 1512–1524. https://doi.org/10.1038/s41893-024-01433-4

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. ACM International Conference Proceeding Series, 148, 161–168. https://doi.org/10.1145/1143844.1143865

Elachi, C., & Zyl, J. (2021). Introduction to the Physics and Techniques of Remote Sensing (3rd ed.). John Wiley & Sons. https://doi.org/10.1002/9781119523048

Erlin, E., Rahmiati, R., & Rio, U. (2014). Two Text Classifiers in Online Discussion: Support Vector Machine vs Back-Propagation Neural Network. TELKOMNIKA (Telecommunication Computing Electronics and Control), 12(1), 189. https://doi.org/10.12928/TELKOMNIKA.v12i1.1798

Galindo, V., Giraldo, C., Lavelle, P., Armbrecht, I., & Fonte, S. J. (2022). Land use conversion to agriculture impacts biodiversity, erosion control, and key soil properties in an Andean watershed. Ecosphere, 13(3), e3979. https://doi.org/10.1002/ecs2.3979

Ghoggali, N., & Melgani, F. (2009). Automatic ground-truth validation with genetic algorithms for multispectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2172–2181. https://doi.org/10.1109/TGRS.2009.2013693

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Elsevier. https://doi.org/10.1016/C2009-0-61819-5

Hao, L., Qingdong, S., Imin, B., & Kasim, N. (2020). Methodology for optimizing quadrat size in sparse vegetation surveys: A desert case study from the Tarim Basin. PLOS ONE, 15(8), e0235469. https://doi.org/10.1371/journal.pone.0235469

Hapsary, M. S. A., Subiyanto, S., & Firdaus, H. S. (2021). Analisis Prediksi Perubahan Penggunaan Lahan dengan Pendekatan Artificial Neural Network dan Regresi Logistik di Kota Balikpapan. Jurnal Geodesi Undip, 10(2), 88–97. https://doi.org/10.14710/jgundip.2021.30637

Ifriza, Y. N., & Sam’an, M. (2021). Performance comparison of support vector machine and gaussian naive bayes classifier for youtube spam comment detection. Journal of Soft Computing Exploration, 2(2), 93–98. https://doi.org/10.52465/joscex.v2i2.42

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166

Jayaraman, S., Thangaraj, V., & Esakkirajan, S. (2009). Digital Image Processing (1st ed.). Tata McGraw Hill Education.

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining, 15(4), 531–538. https://doi.org/10.1002/sam.11583

Kaul, A., & Raina, S. (2022). Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurrency and Computation: Practice and Experience, 34(15), 1–35. https://doi.org/10.1002/cpe.6945

Krebs, R., Bagui, S. S., Mink, D., & Bagui, S. C. (2024). Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset. Electronics, 13(19), 3916. https://doi.org/10.3390/electronics13193916

Li, Y., & Zhang, L. (2024). A Novel Loss Function-based Support Vector Machine for Binary Classification. ArXiv, 1–17. https://doi.org/10.48550/arXiv.2403.16654

Lillesand, T., Kiefer, R. W., & Chipman, J. (2015). Remote sensing and image interpretation (7th ed.). John Wiley & Sons.

Luque, A., Carrasco, A., Martín, A., & de las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. https://doi.org/10.1016/j.patcog.2019.02.023

Mandanici, E., & Bitelli, G. (2016). Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sensing, 8(12), 1–10. https://doi.org/10.3390/rs8121014

Millennianita, F., Athiyah, U., & Muhammad, A. W. (2024). Comparison of Naïve Bayes Classifier and Support Vector Machine Methods for Sentiment Classification of Responses to Bullying Cases on Twitter. Journal of Mechatronics and Artificial Intelligence, 1(1), 11–26. https://doi.org/10.17509/jmai.v1i1.69959

Phiri, D., & Morgenroth, J. (2017). Developments in Landsat Land Cover Classification Methods: A Review. Remote Sensing, 9(9), 967. https://doi.org/10.3390/rs9090967

Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sensing, 12(14), 2291. https://doi.org/10.3390/rs12142291

Raschka, S. (2017). Naive Bayes and Text Classification I - Introduction and Theory. ArXiv, 1–20. https://doi.org/10.48550/arXiv.1410.5329

Rifkin, R., & Klautau, A. (2004). In Defense of One-Vs-All Classification. Journal of Machine Learning Research, 5, 101–141. https://dl.acm.org/doi/10.5555/1005332.1005336

Shajari, H., & Rangarajan, A. (2020). A Unified Framework for Multiclass and Multilabel Support Vector Machines. ArXiv, 1–27. https://doi.org/10.48550/arXiv.2003.11197

Sivakumar, M., Parthasarathy, S., & Padmapriya, T. (2024). Trade-off between training and testing ratio in machine learning for medical image processing. PeerJ Computer Science, 10, 1–17. https://doi.org/10.7717/peerj-cs.2245

Su, Z. H., Lin, C., Ma, R. H., Luo, J. H., & Liang, Q. O. (2015). Effect of land use change on lake water quality in different buffer zones. Applied Ecology and Environmental Research, 13(3), 639–653. https://doi.org/10.15666/aeer/1303_639653

Thakrar, S. K., Johnson, J. A., & Polasky, S. (2024). Land-Use Decisions Have Substantial Air Quality Health Effects. Environmental Science & Technology, 58(1), 381–390. https://doi.org/10.1021/acs.est.3c02280

Urso, A., Fiannaca, A., La Rosa, M., Ravì, V., & Rizzo, R. (2019). Data Mining: Classification and Prediction. In Encyclopedia of Bioinformatics and Computational Biology (Vol. 1, pp. 384–402). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20461-5

Varoquaux, G. (2018). Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage, 180(Part A), 68–77. https://doi.org/10.1016/j.neuroimage.2017.06.061

Wang, S., & Dai, L. (2024). Effect of Quadrat Shape on Spatial Point Pattern Performance of Haloxylon ammodendron. Open Journal of Ecology, 14(01), 66–76. https://doi.org/10.4236/oje.2024.141004

Williams, J. J., & Newbold, T. (2020). Local climatic changes affect biodiversity responses to land use: A review. Diversity and Distributions, 26(1), 76–92. https://doi.org/10.1111/ddi.12999

Zhang, T., Su, J., Xu, Z., Luo, Y., & Li, J. (2021). Sentinel-2 Satellite Imagery for Urban Land Cover Classification by Optimized Random Forest Classifier. Applied Sciences, 11(2), 543. https://doi.org/10.3390/app11020543

Zhang, Z., Zhang, F., Du, J., Chen, D., & Zhang, W. (2021). Impacts of land use at multiple buffer scales on seasonal water quality in a reticular river network area. PLOS ONE, 16(1), 1–20. https://doi.org/10.1371/journal.pone.0244606




DOI: https://doi.org/10.31764/jtam.v9i2.29683

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muna Faizatun Nabilah, Achmad Fauzan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: