The Decomposition of a Finitely Generated Module over Some Special Ring

I Gede Adhitya Wisnu Wardhana

Abstract


This research aims to give the decompositions of a finitely generated module over some special ring, such as the principal ideal domain and Dedekind domain. One of the main problems with module theory is to analyze the objects of the module. This research was using a literature study on finitely generated modules topics from scientific journals, especially those related to the module theory. And by selective cases we find a pattern to build a conjecture or a hypothesis, by deductive proof, we prove the conjecture and state it as a theorem. The main result in this study is the decomposition of the finitely generated module is a direct sum of the torsion submodule and torsion-free submodule.  Since the torsion-free module is always a free module over a principal ideal domain, then the torsion-free submodule is a free module. Last, we generalize the ring, from a principal ideal domain, to a Dedekind domain. We found then the torsion-free submodule became a projective module.  Then the decomposition of the finitely generated module is a direct sum of the torsion submodule and the projective submodule. These results should help the researchers to analyze the objects on module theory.

 


Keywords


Decomposition module; Dedekind domain; Free module; Principal ideal domain; Projective module; Torsion-free module

Full Text:

DOWNLOAD [PDF]

References


Ali Misri, M., Garminia, H. YJuliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021). Some Characteristics of Cyclic Prime, Weakly Prime and Almost Prime Submodule of Gaussian Integer Modulo over Integer. AIP Conference Proceedings, 2329(February). https://doi.org/10.1063/5.0042586

Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121–128. https://doi.org/10.17654/NT038020121

., & By Pass Perjuangan Kesambi, J. (2013). Generalization of Bézout Modules. In Far East Journal of Mathematical Sciences (FJMS) (Vol. 72, Issue 1). http://pphmj.com/journals/fjms.htm

Elfiyanti, G., Muchtadi-Alamsyah, I., Yuliawan, F., & Nasution, D. (2020). On the category of weakly U-complexes. European Journal of Pure and Applied Mathematics, 13(2), 323–345. https://doi.org/10.29020/nybg.ejpam.v13i2.3673

Fahmi, M., & Rosli, N. (2021). Comparative study of Stochastic Taylor Methods and Derivative-Free Methods for Stochastic Differential Equations. Journal of Physics: Conference Series, 1988(1). https://doi.org/10.1088/1742-6596/1988/1/012005

Fitriani, Wijayanti, I. E., Surodjo, B., Wahyuni, S., & Faisol, A. (2021). Category of submodules of a uniserial module. Mathematics and Statistics, 9(5), 744–748. https://doi.org/10.13189/ms.2021.090514

Hijriati, N., Wahyuni, S., & Wijayanti, I. E. (2018). Injectivity and Projectivity Properties of the Category of Representation Modules of Rings. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012078

Irwansyah, & Suprijanto, D. (2018). Structure of linear codes over the ring Bk. Journal of Applied Mathematics and Computing, 58(1–2), 755–775. https://doi.org/10.1007/s12190-018-1165-0

Juliana, R., Wardhana, I. G. A. W., & Irwansyah. (2021). Some Characteristics of Cyclic Prime, Weakly Prime and Almost Prime Submodule of Gaussian Integer Modulo over Integer. AIP Conference Proceedings, 2329(February). https://doi.org/10.1063/5.0042586

Kaewwangsakoon, J., & Pianskool, S. (2020). F-CS-RICKART MODULES. JP Journal of Algebra, Number Theory and Applications, 45(1), 29–54. https://doi.org/10.17654/nt045010029

Kusniyanti, E., Garminia, H., & Astuti, P. (2016). Dedekind domains and dedekind modules. JP Journal of Algebra, Number Theory and Applications, 38(3), 249–260. https://doi.org/10.17654/NT038030249

Maulana, F., Wardhana, I. G. A. W., & Switrayni, N. W. (2019). Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss. EIGEN MATHEMATICS JOURNAL, 1(1), 1. https://doi.org/10.29303/emj.v1i1.29

Misri, M. A., Garminia, H., Astuti, P., & Irawati. (2016). A note on bézout modules. Far East Journal of Mathematical Sciences, 99(11), 1723–1732. http://dx.doi.org/10.17654/MS099111723

Misuki, W. U., Wardhana, G. A. W., & Switrayni, N. W. (2021). Some Characteristics of Prime Cyclic Ideal On Gaussian Integer Ring Modulo. https://doi.org/10.1088/1757-899X/1115/1/012084

Sangwirotjanapat, S., & Pianskool, S. (2018). T-Small Submodules With Respect to An Arbitrary Submodule. JP Journal of Algebra, Number Theory and Applications, 40(1), 91–112. https://doi.org/10.17654/nt040010091

Sauri, M. S., Hadijati, M., & Fitriyani, N. (2021). Spline and Kernel Mixed Nonparametric Regression for Malnourished Children Model in West Nusa Tenggara. Jurnal Varian, 4(2), 99–108. https://doi.org/10.30812/varian.v4i2.1003

Steven, & Irawati. (2018). On Characterizations of Prime and Almost Prime Submodules. JP Journal of Algebra, Number Theory and Applications, 40(3), 341–350. https://doi.org/10.17654/nt040030341

Utami, R., Hadijati, M., & Wardhana, I. G. A. W. (2021). Intervention Model of IDX Finance Stock for the Period May 2010 - May 2020 Due to the Effects of the Corona Virus. IOP Conference Series: Materials Science and Engineering, 1115(1), 012057. https://doi.org/10.1088/1757-899x/1115/1/012057

Wardhana, I. G. A. W., & Astuti, P. (2014). Karakteristik Submodul Prima Lemah dan Submodul Hampir Prima pada Z-Modul Zn. Jurnal Matematika & Sains, 19(1), 16–20.

Wardhana, I. G. A. W., Astuti, P., & Muchtadi-Alamsyah, I. (2016). On almost prime submodules of a module over a principal ideal domain. JP Journal of Algebra, Number Theory and Applications, 38(2), 121–128. https://doi.org/10.17654/NT038020121

Wardhana, I. G. A. W., Nghiem, N. D. H., Switrayni, N. W., & Aini, Q. (2021). A note on almost prime submodule of CSM module over principal ideal domain. Journal of Physics: Conference Series, 2106(1), 012011https://doi.org/10.1088/1742-6596/2106/1/012011

Wardhana, I. G. A. W., Switrayni, N. W., & Aini, Q. (2018). Eigen Mathematics Journal Submodul Prima Lemah dan Submodul Hampir Prima Pada Z-modul M2(Zn). Eigen Mathematics Journal, 1(1), 28–30. https://doi.org/10.29303/emj.v1i1.6




DOI: https://doi.org/10.31764/jtam.v6i2.6769

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 I Gede Adhitya Wisnu Wardhana

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: