Characteristic Min-Polynomial and Eigen Problem of a Matrix over Min-Plus Algebra

Sahmura Maula Al Maghribi, Siswanto Siswanto, Sutrima Sutrima

Abstract


Let R_ε=R∪{-∞}, with R being a set of all real numbers. The algebraic structure (R_ε,⊕,⊗) is called max-plus algebra. The task of finding the eigenvalue and eigenvector is called the eigenproblem. There are several methods developed to solve the eigenproblem of A∈R_ε^(n×n), one of them is by using the characteristic max-polynomial. There is another algebraic structure that is isomorphic with max-plus algebra, namely min-plus algebra. Min-plus algebra is a set of R_(ε^' )=R∪{+∞} that uses minimum (⊕^' ) and addition (⊗) operations. The eigenproblem in min-plus algebra is to determine λ∈R_(ε^' ) and v∈R_(ε^')^n such that A⊗v=λ⊗v. In this paper, we provide a method for determining the characteristic min-polynomial and solving the eigenproblem by using the characteristic min-polynomial. We show that the characteristic min-polynomial of A∈R_(ε^')^(n×n) is the permanent of I⊗x⊕^' A, the smallest corner of χ_A (x) is the principal eigenvalue (λ(A)), and the columns of A_λ^+ with zero diagonal elements are eigenvectors corresponding to the principal eigenvalue.

Keywords


Min-plus algebra; Characteristic min-polynomial; Eigenvalue; Eigenvector; Smallest corner.

Full Text:

DOWNLOAD [PDF]

References


Bang-Jensen, J., & Gutin, G. (2018). Classes of Directed graphs. Springer. https://doi.org/10.1007/978-3-319-71840-8

Butcovic, P. (2010). Max-linear Systems: Theory and Algorithms. Springer. https://link.springer.com/book/10.1007/978-1-84996-299-5

Chartrand, G., Lesniak, L., & Zhang, P. (2015). Graphs And Digraphs (6th ed.). CRC press. https://doi.org/10.1201/b19731

Chaturvedi, M., & McConnell, R. M. (2017). A Note On Finding Minimum Mean Cycle. Information Processing Letters, 127, 21–22. https://doi.org/10.1016/j.ipl.2017.06.007

Gyamerah, S. A., Boateng, P. K., & Harvim, P. (2015). Max-plus Algebra and Application to Matrix Operations. British Journal of Mathematics & Computer Science, 12(3), 1–14. https://doi.org/10.9734/bjmcs/2016/21639

Jones, D. (2021). Matrix roots in the max-plus algebra. Linear Algebra and Its Applications, 631, 10–34. https://doi.org/10.1016/j.laa.2021.08.008

Kim, Y. K., & Pipattanajinda, N. (2017). New method for finding the determinant of a matrix. Chamchuri Journal of Mathematics, 9(2017), 1–12. https://math.sc.chula.ac.th/cjm/content/new-method-finding-determinant-matrix

Liesen, J., & Mehrmann, V. (2015). Linear Algebra. Springer. https://doi.org/10.1007/978-3-319-24346-7

Maclagan, D., & Sturmfels, B. (2015). Introduction to Tropical Geometry. American Mathematical Society. www.ams.org/bookpages/gsm-161

Mufid, M. S., & Subiono. (2014). Eigenvalues and Eigenvectors of Latin Squares in Max-Plus Algebra. Journal of the Indonesian Mathematical Society, 20(1), 37–45. https://doi.org/10.22342/jims.20.1.178.37-45

Myšková, H. (2016). Interval max-plus matrix equations. Linear Algebra and Its Applications, 492, 111–127. https://doi.org/10.1016/j.laa.2015.10.031

Nishida, Y., Watanabe, S., & Watanabe, Y. (2020). On The Vectors Associated with the Roots of Max-Plus Characteristic Polynomials. Applications of Mathematics, 65(6), 785–805. https://doi.org/10.21136/AM.2020.0374-19

Nowak, A. W. (2014). The Tropical Eigenvalue-Vector Problem from Algebraic, Graphical, and Computational Perspectives [Honors Theses, Bates College]. http://scarab.bates.edu/honorstheses/97

Rahayu, E. W., Siswanto, S., & Wiyono, S. B. (2021). Masalah Eigen Dan Eigenmode Matriks Atas Aljabar Min-Plus. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(4), 659–666. https://doi.org/10.30598/barekengvol15iss4pp659-666

Rosenmann, A., Lehner, F., & Peperko, A. (2019). Polynomial convolutions in max-plus algebra. Linear Algebra and Its Applications, 578, 370–401. https://doi.org/10.1016/j.laa.2019.05.020

Siswanto, Gusmizain, A., & Wibowo, S. (2021). Determinant of a matrix over min-plus algebra. Journal of Discrete Mathematical Sciences and Cryptography, 24(6), 1829–1835. https://doi.org/10.1080/09720529.2021.1948663

Siswanto, Kurniawan, V. Y., Pangadi, & Wiyono, S. B. (2021). Characteristic polynomial of matrices over interval max-plus algebra. AIP Conference Proceedings, 2326(1). https://doi.org/10.1063/5.0039779

Siswanto, Suparwanto, A., & Rudhito, M. A. (2016). Strongly Regular Matrices and Simple Image Set in Interval Max-Plus Algebra. JP Journal of Algebra, Number Theory and Applications, 38(1), 63–78. https://doi.org/10.17654/NT038010063

Sobamowo, M. G. (2016). On the Extension of Sarrus’ Rule to n × n (n > 3) Matrices: Development of New Method for the Computation of the Determinant of 4 × 4 Matrix. International Journal of Engineering Mathematics, 2016, 1–14. https://doi.org/10.1155/2016/9382739

Subiono. (2015). Aljabar Min-Max Plus dan Terapannya. Institut Teknologi Sepuluh Nopember.

Suprayitno, H. (2017). Correctness Proof of Min-plus Algebra for Network Shortest-Paths Simultaneous Calculation. In Journal of Technology and Social Science (JTSS)-61-J. Tech. Soc. Sci (Vol. 1, Issue 1). http://jtss.e-jikei.org/issue/archives/vol01_no01/9_A010/Camera%20ready%20manuscript_JTSS_A010.pdf

Tunisa, K., Wijayanti, K., & Budhiati Veronica, R. (2017). Nilai Eigen Dan Vektor Eigen Matriks Atas Aljabar Max-Plus. UNNES Journal of Mathematics, 6(2), 189–197. https://journal.unnes.ac.id/sju/index.php/ujm/article/view/20483

Umer, M., Hayat, U., & Abbas, F. (2019). An Efficient Algorithm for Nontrivial Eigenvectors in Max-Plus Algebra. Symmetry, 11(6), 1–9. https://doi.org/10.3390/sym11060738

Wang, C., Xia, Y., & Tao, Y. (2021). Ordered Structures of Polynomials over Max-Plus Algebra. Symmetry, 13(7), 1–16. https://doi.org/10.3390/sym13071137

Watanabe, S., Tozuka, Y., Watanabe, Y., Yasuda, A., & Iwasaki, M. (2017). Two characteristic polynomials corresponding to graphical networks over min-plus algebra. ArXiv, 1–16. https://doi.org/10.48550/arXiv.1705.09513

Watanabe, S., & Watanabe, Y. (2014). Min‐Plus Algebra and Networks. Research Institute for Mathematical Sciences Kyoto University, 47, 41–54. http://hdl.handle.net/2433/226217

Yonggu, K., & Hee, S. H. (2018). Eigenspaces of Max-Plus Matrices: An Overview. Journal for History of Mathematics, 31(1), 1–17. https://doi.org/10.14477/jhm.2018.31.1.001




DOI: https://doi.org/10.31764/jtam.v7i4.16498

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sahmura Maula Al Maghribi, Siswanto, Sutrima

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: