Selection Dominant Features Using Principal Component Analysis for Predictive Maintenance of Heave Engines

Suryasatriya Trihandaru, Hanna Arini Parhusip, Adrianus Herry Heriadi, Petrus Priyo Santosa, Yohanes Sardjono, Lea Lea

Abstract


This article aims to identify the dominant features that have a significant impact on the health of a heavy machine that relates to the digital infrastructure of a company. The importance of this research is that the authors define predictive maintenance based on Principal Component Analysis (PCA), which is the novelty of this article. The novel contribution of this research lies in the application of Principal Component Analysis (PCA) for predictive maintenance of heavy machinery, which has not been integrated into the Scheduled Oil Sampling (SOS) procedures. The recorded data are called Scheduled Oil Sampling (SOS) and historical data from an equipment called CoreDataQ, which works for recording many features from heavy machine activities. The data contain two sets data. The method is Principal Component Analysis (PCA). This method leads to obtain a maximum of 20 significant features on data based on SOS. The results have been confirmed and agreed upon by the manager who owned CoreDataQ to consider the selected dominant features for further related maintenance.

 


Keywords


PCA; SOS; CoreDataQ; Predictive Maintenance.

Full Text:

DOWNLOAD [PDF]

References


Alisneaky, C. B.-S. 4. . (2019). Intuitively understanding SVM and SVR. Medium. https://www.machinecurve.com/index.php/2019/09/20/intuitively-understanding-svm-and-svr/#how-does-support-vector-regression-work

Bahl, A., Hellack, B., Balas, M., Dinischiotu, A., Wiemann, M., Brinkmann, J., Luch, A., Renard, B. Y., & Haase, A. (2019). Recursive feature elimination in random forest classification supports nanomaterial grouping. NanoImpact, 15(March), 1–34. https://doi.org/10.1016/j.impact.2019.100179

Beliavsky, G., Danilova, N., & Yao, K. (2023). Principal component analysis and optimal protfolio. Journal of Mathematical Sciences, 38(4), 368–377. https://doi.org/10.1093/llc/fqad054

Chourib, I., Guillard, G., Farah, I. R., & Solaiman, B. (2022). Stroke Treatment Prediction Using Features Selection Methods and Machine Learning Classifiers. Iirbm, 43(6), 678–686. https://doi.org/10.1016/j.irbm.2022.02.002

Dabića, M., Jane Frances, Maleyd Jadranka, Š., & Počekg, J. (2023). Future of Digital Work: Challenges for Sustainable Human Resources Management. Journal of Innovation & Knowledge, 8(2).

de Góes Maciel, F., O’Rourke, S., Jones, M., Hemstrom, W., Miller, M. R., Schmaedecke, G., Tambosi, L. R., Pires Baptista, M. S., Keuroghlian, A., Nava, A. F. D., Nardi, M. S., de Almeida Jácomo, A. T., Silveira, L., Furtado, M. M., Tôrres, N. M., & Biondo, C. (2024). Loss of genetic diversity and isolation by distance and by environment in populations of a keystone ungulate species. Conservation Genetics, 1–24. https://doi.org/10.1007/s10592-024-01614-w

Dugger, Z., Halverson, G., McCrory, B., & Claudio, D. (2022). Principal Component Analysis in MCDM: An exercise in pilot selection. Expert Systems with Applications, 188(February). https://doi.org/10.1016/j.eswa.2021.115984

Escanilla, N. S., Hellerstein, L., Kleiman, R., Zhaobin, K., James, D., & Shull†, D. P. (2018). Recursive Feature Elimination by Sensitivity Testing. Proc Int Conf Mach Learn Appl., 40–47. https://doi.org/10.1109/ICMLA.2018.00014.Recursive

Hamada, J. J. T. M., Hassan, M., Kakudi, H., & Abiodun, J. O. (2022). A Machine Learning Method for Classification of Cervical Cancer. Electronics, 11(2), 463. https://doi.org/https://doi.org/10.3390/electronics11030463

Jollife, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065). https://doi.org/10.1098/rsta.2015.0202

Lee, C. H., Trappey, A. J. C., Liu, C. L., Mo, J. P. T., & Desouza, K. C. (2022). Design and management of digital transformations for value creation. Advanced Engineering Informatics, 52(April), 3–5. https://doi.org/10.1016/j.aei.2022.101547

Luo, W. (2019). User choice of interactive data visualization format: The effects of cognitive style and spatial ability. Decision Support Systems, 122(July), 1–9. https://doi.org/10.1016/j.dss.2019.05.001

Ng, S. C. (2017). Principal component analysis to reduce dimension on digital image. Procedia Computer Science, 111, 113–119. https://doi.org/10.1016/j.procs.2017.06.017

Parhusip, H. A., Trihandaru, S., Heriadi, A. H., Santosa, P. P., & Puspasari, M. D. (2022). Data Exploration Using Tableau and Principal Component Analysis. International Journal on Informatics Visualization, 6(4), 911–920. https://doi.org/10.30630/joiv.6.4.952

Peterson, L. E., & Coleman, M. A. (2006). Comparison of gene identification based on artificial neural network pre-processing with k-means cluster and principal component analysis. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3849 LNAI(September), 267–276. https://doi.org/10.1007/11676935_33

Qiu, Z., Wang, S., Hou, Y., & Xu, S. (2023). What Drives Infrastructure Participants to Adopt Digital Technology: A Nexus of Internal and External Factors. Sustainability, 15(23), 16229. https://doi.org/10.3390/su152316229

Schade, P., & Schuhmacher, M. C. (2022). Digital infrastructure and entrepreneurial action-formation: A multilevel study. Journal of Business Venturing, 37(5), 1–6. https://doi.org/10.1016/j.jbusvent.2022.106232

Stodola, P., & Stodola, J. (2020). Model of predictive maintenance of machines and equipment. Applied Sciences (Switzerland), 10(1). https://doi.org/10.3390/app10010213

Systems, C. (2022). Internet of Things and Cyber-Physical Systems Sustainability 4 . 0 and its applications in the field of manufacturing. Internet of Things and Cyber-Physical Systems, 2, 82–90. https://doi.org/https://doi.org/10.1016/j.iotcps.2022.06.001

Zhang, J., Cao, G., Peng, Q., Tan, R., Liu, W., & Zhang, H. (2022). A systematic knowledge-based method for design of transformable product. Advanced Engineering Informatics, 52(April), 2022–2023. https://doi.org/10.1016/j.aei.2022.101638

Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers and Industrial Engineering, 150(December), 1–7. https://doi.org/10.1016/j.cie.2020.106889




DOI: https://doi.org/10.31764/jtam.v8i4.22854

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Suryasatriya Trihandaru, Hanna Arini Parhusip, Adrianus Herry Heriadi, Petrus Priyo Santosa, Yohanes Sardjono, Lea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: