Robust Optimization Model Analysis for Online Sentiment Issues on Shopee using Support Vector Machine
Abstract
In the digital economy era, e-commerce platforms like Shopee receive thousands of user reviews daily, which significantly influence customer perceptions and purchasing decisions. However, sentiment analysis of such reviews remains challenging due to the presence of noise, uncertainty, and dynamic data changes. This quantitative research aims to develop a more reliable sentiment classification model by integrating a Lexicon-Based labeling approach and Support Vector Machine (SVM) classification with a Robust Optimization framework. The labeling process uses a sentiment lexicon dictionary that assigns polarity values to words, classifying texts into positive, negative, or neutral categories. The classification process utilizes SVM to evaluate sentiment prediction based on key performance metrics: Accuracy, Precision, Recall, and F1-score. These performance metrics are treated as uncertain parameters in the optimization phase. The main contribution of this study is the formulation of a robust optimization model for sentiment analysis weighting problems, transforming a multi-criteria objective into a single-objective utility function. By applying polyhedral uncertainty modeling, the robust counterpart formulation accounts for worst-case scenarios in model evaluation. Numerical experiments using Python in Google Colab show that while the deterministic model achieves a higher performance score (0.865), the robust model yields a slightly lower score (0.825) but offers better stability under uncertainty. These results imply that robust optimization can enhance the reliability of sentiment classification systems in real-world e-commerce applications, providing more trustworthy insights for businesses in managing consumer feedback.
Keywords
Full Text:
DOWNLOAD [PDF]References
Akbari, W. A., Tukino, T., Huda, B., & Muslih, M. (2023). Sentiment Analysis of Twitter User Opinions Related to Metaverse Technology Using Lexicon Based Method. Sinkron, 8(1), 195–201. https://doi.org/10.33395/sinkron.v8i1.11992
Almaspoor, M. H., Safaei, A., Salajegheh, A., Minaei-Bidgoli, B., & Safaei, A. A. (2021). Support Vector Machines in Big Data Classiication: A Systematic Literature Review Support Vector Machines in Big Data Classification: 1 A Systematic Literature Review 2 3. http://dx.doi.org/10.21203/rs.3.rs-663359/v1
B, H. G., & B, S. N. (2023). Cryptocurrency Price Prediction using Twitter Sentiment Analysis. 13–22. https://doi.org/10.5121/csit.2023.130302
Borrohou, S., Fissoune, R., & Badir, H. (2023). Data cleaning survey and challenges – improving outlier detection algorithm in machine learning. Journal of Smart Cities and Society, 2(3), 125–140. https://doi.org/10.3233/scs-230008
Cipta, H., Suwilo, S., Sutarman, & Mawengkang, H. (2022). Improved Benders decomposition approach to complete robust optimization in box-interval. Bulletin of Electrical Engineering and Informatics, 11(5), 2949–2957. https://doi.org/10.11591/eei.v11i5.4394
Firdaus, R., Asror, I., & Herdiani, A. (2021). Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation. Indonesia Journal of Computing, 6(1), 1–12. https://doi.org/10.34818/indojc.2021.6.1.408
Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information (Switzerland), 15(4). https://doi.org/10.3390/info15040235
Hek, T. K., Hou, A., Tinggi, S., Ekonomi, I., & Prasetya, E. (2025). Formation of Linear Programming Models of Water Price Compliant to the Regulation of Ministry of Home Affairs , Indonesia. JTAM. 9(2), 555–567. https://doi.org/10.31764/jtam.v9i2.29484
Khaw, J. (2023). Shopee: How Does E-commerce Affect E-consumer Perception And Satisfaction? International Journal of Tourism and Hospitality in Asia Pasific, 6(1), 1–13. https://doi.org/10.32535/ijthap.v6i1.2169
Khyathi, G., Indumathi, K. P., A, J. H., M, L. F. J., Siluvai, S., & Krishnaprakash, G. (2025). Support Vector Machines : A Literature Review on Their Application in Analyzing Mass Data for Public Health. 17(1), 1–6. https://doi.org/10.7759/cureus.77169
Kumar, R., Pannu, H. S., & Malhi, A. K. (2020). Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications, 32(8), 3221–3235. https://doi.org/10.1007/s00521-019-04105-z
Mostafa, G. (2025). Improve the Sentiment of Bengali Language Texts with Stopword Removal Improve the Sentiment of Bengali Language Texts with Stopword Removal. March. http://dx.doi.org/10.1145/3723178.3723233
Nabilah, M. F., Fauzan, A., & Indonesia, U. I. (2025). Analyzing Multiclass Land Cover and Spatial Point Patterns on Sentinel-2 Imagery Using Machine Learning and Deep Learning. JTAM. 9(2), 346–361. https://doi.org/10.31764/jtam.v9i2.29683
Peshawa, J. M. A., & Rezhna, H. F. (2014). Data Normalization and Standardization: A Technical Report. Machine Learning Technical Reports, 1(1), 1–6. http://dx.doi.org/10.13140/RG.2.2.28948.04489
Prayitno, S. B. (2023). Generation Z perception of national online shopping day on Shopee e-commerce. Journal of Management Science (JMAS, 6(4), 596–604. https://doi.org/10.35335/jmas.v6i4.306
Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach. Social Network Analysis and Mining, 13(1), 1–14. https://doi.org/10.1007/s13278-023-01030-x
Raees, M., & Fazilat, S. (2024). Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models. 1–18. https://doi.org/10.48550/arXiv.2409.12840
Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A., Uzan, O., Pinter, Y., & Tanner, C. (2024). Tokenization Is More Than Compression. https://doi.org/10.48550/arXiv.2402.18376
Siddhartha, S. B., Khyani, D., Niveditha, M. N., & Divya, M. B. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology, 22(10), 350–357. https://www.researchgate.net/publication/348306833
Sitorus, R. A., & Zufria, I. (2024). Application of the Naïve Bayes Algorithm in Sentiment Analysis of Using the Shopee Application on the Play Store. Digital Zone, 15(1), 53–65. https://doi.org/10.31849/digitalzone.v15i1.19828
Syahputri, L., & Cipta, H. (2024). Implementation of Robust Optimization Model to Controlling the Inventory Costs of Consumable Medical Equipment at Malahayati Islamic Hospital. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 710–723. https://doi.org/10.20956/j.v20i3.34284
Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. Applied Sciences (Switzerland), 13(7). https://doi.org/10.3390/app13074550
Tang, W. (2024). Application of support vector machine system introducing multiple submodels in data mining. Systems and Soft Computing, 6(April), 200096. https://doi.org/10.1016/j.sasc.2024.200096
Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification. http://dx.doi.org/10.48550/arXiv.2001.09636
Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754–757. https://doi.org/10.1016/j.ajodo.2023.08.003
Ventre, I., & Kolbe, D. (2020). The Impact of Perceived Usefulness of Online Reviews, Trust and Perceived Risk on Online Purchase Intention in Emerging Markets: A Mexican Perspective. Journal of International Consumer Marketing, 32(4), 287–299. https://doi.org/10.1080/08961530.2020.1712293
Wahyuningsih, S., & Ziyana Untsa, F. (2023). English as Business Lingua Franca: Examining the Use of English in Indonesian Online Business. ELT-Lectura, 10(2), 96–104. https://doi.org/10.31849/elt-lectura.v10i2.13699
DOI: https://doi.org/10.31764/jtam.v9i3.31555
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Raisha Zuhaira Dongoran, Hendra Cipta

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
![]() | JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: