Robust Optimization Model Analysis for Online Sentiment Issues on Shopee using Support Vector Machine

Raisha Zuhaira Dongoran, Hendra Cipta

Abstract


In the digital economy era, e-commerce platforms like Shopee receive thousands of user reviews daily, which significantly influence customer perceptions and purchasing decisions. However, sentiment analysis of such reviews remains challenging due to the presence of noise, uncertainty, and dynamic data changes. This quantitative research aims to develop a more reliable sentiment classification model by integrating a Lexicon-Based labeling approach and Support Vector Machine (SVM) classification with a Robust Optimization framework. The labeling process uses a sentiment lexicon dictionary that assigns polarity values to words, classifying texts into positive, negative, or neutral categories. The classification process utilizes SVM to evaluate sentiment prediction based on key performance metrics: Accuracy, Precision, Recall, and F1-score. These performance metrics are treated as uncertain parameters in the optimization phase. The main contribution of this study is the formulation of a robust optimization model for sentiment analysis weighting problems, transforming a multi-criteria objective into a single-objective utility function. By applying polyhedral uncertainty modeling, the robust counterpart formulation accounts for worst-case scenarios in model evaluation. Numerical experiments using Python in Google Colab show that while the deterministic model achieves a higher performance score (0.865), the robust model yields a slightly lower score (0.825) but offers better stability under uncertainty. These results imply that robust optimization can enhance the reliability of sentiment classification systems in real-world e-commerce applications, providing more trustworthy insights for businesses in managing consumer feedback.


Keywords


Polyhedral Uncertainty. Robust Optimization; Sentiment Analysis; Lexicon-Based; Shopee; Support Vektor Machine (SVM).

Full Text:

DOWNLOAD [PDF]

References


Akbari, W. A., Tukino, T., Huda, B., & Muslih, M. (2023). Sentiment Analysis of Twitter User Opinions Related to Metaverse Technology Using Lexicon Based Method. Sinkron, 8(1), 195–201. https://doi.org/10.33395/sinkron.v8i1.11992

Almaspoor, M. H., Safaei, A., Salajegheh, A., Minaei-Bidgoli, B., & Safaei, A. A. (2021). Support Vector Machines in Big Data Classiication: A Systematic Literature Review Support Vector Machines in Big Data Classification: 1 A Systematic Literature Review 2 3. http://dx.doi.org/10.21203/rs.3.rs-663359/v1

B, H. G., & B, S. N. (2023). Cryptocurrency Price Prediction using Twitter Sentiment Analysis. 13–22. https://doi.org/10.5121/csit.2023.130302

Borrohou, S., Fissoune, R., & Badir, H. (2023). Data cleaning survey and challenges – improving outlier detection algorithm in machine learning. Journal of Smart Cities and Society, 2(3), 125–140. https://doi.org/10.3233/scs-230008

Cipta, H., Suwilo, S., Sutarman, & Mawengkang, H. (2022). Improved Benders decomposition approach to complete robust optimization in box-interval. Bulletin of Electrical Engineering and Informatics, 11(5), 2949–2957. https://doi.org/10.11591/eei.v11i5.4394

Firdaus, R., Asror, I., & Herdiani, A. (2021). Lexicon-Based Sentiment Analysis of Indonesian Language Student Feedback Evaluation. Indonesia Journal of Computing, 6(1), 1–12. https://doi.org/10.34818/indojc.2021.6.1.408

Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information (Switzerland), 15(4). https://doi.org/10.3390/info15040235

Hek, T. K., Hou, A., Tinggi, S., Ekonomi, I., & Prasetya, E. (2025). Formation of Linear Programming Models of Water Price Compliant to the Regulation of Ministry of Home Affairs , Indonesia. JTAM. 9(2), 555–567. https://doi.org/10.31764/jtam.v9i2.29484

Khaw, J. (2023). Shopee: How Does E-commerce Affect E-consumer Perception And Satisfaction? International Journal of Tourism and Hospitality in Asia Pasific, 6(1), 1–13. https://doi.org/10.32535/ijthap.v6i1.2169

Khyathi, G., Indumathi, K. P., A, J. H., M, L. F. J., Siluvai, S., & Krishnaprakash, G. (2025). Support Vector Machines : A Literature Review on Their Application in Analyzing Mass Data for Public Health. 17(1), 1–6. https://doi.org/10.7759/cureus.77169

Kumar, R., Pannu, H. S., & Malhi, A. K. (2020). Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications, 32(8), 3221–3235. https://doi.org/10.1007/s00521-019-04105-z

Mostafa, G. (2025). Improve the Sentiment of Bengali Language Texts with Stopword Removal Improve the Sentiment of Bengali Language Texts with Stopword Removal. March. http://dx.doi.org/10.1145/3723178.3723233

Nabilah, M. F., Fauzan, A., & Indonesia, U. I. (2025). Analyzing Multiclass Land Cover and Spatial Point Patterns on Sentinel-2 Imagery Using Machine Learning and Deep Learning. JTAM. 9(2), 346–361. https://doi.org/10.31764/jtam.v9i2.29683

Peshawa, J. M. A., & Rezhna, H. F. (2014). Data Normalization and Standardization: A Technical Report. Machine Learning Technical Reports, 1(1), 1–6. http://dx.doi.org/10.13140/RG.2.2.28948.04489

Prayitno, S. B. (2023). Generation Z perception of national online shopping day on Shopee e-commerce. Journal of Management Science (JMAS, 6(4), 596–604. https://doi.org/10.35335/jmas.v6i4.306

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter data: a comparative application of lexicon- and machine-learning-based approach. Social Network Analysis and Mining, 13(1), 1–14. https://doi.org/10.1007/s13278-023-01030-x

Raees, M., & Fazilat, S. (2024). Lexicon-Based Sentiment Analysis on Text Polarities with Evaluation of Classification Models. 1–18. https://doi.org/10.48550/arXiv.2409.12840

Schmidt, C. W., Reddy, V., Zhang, H., Alameddine, A., Uzan, O., Pinter, Y., & Tanner, C. (2024). Tokenization Is More Than Compression. https://doi.org/10.48550/arXiv.2402.18376

Siddhartha, S. B., Khyani, D., Niveditha, M. N., & Divya, M. B. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing. Journal of University of Shanghai for Science and Technology, 22(10), 350–357. https://www.researchgate.net/publication/348306833

Sitorus, R. A., & Zufria, I. (2024). Application of the Naïve Bayes Algorithm in Sentiment Analysis of Using the Shopee Application on the Play Store. Digital Zone, 15(1), 53–65. https://doi.org/10.31849/digitalzone.v15i1.19828

Syahputri, L., & Cipta, H. (2024). Implementation of Robust Optimization Model to Controlling the Inventory Costs of Consumable Medical Equipment at Malahayati Islamic Hospital. Jurnal Matematika, Statistika Dan Komputasi, 20(3), 710–723. https://doi.org/10.20956/j.v20i3.34284

Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. Applied Sciences (Switzerland), 13(7). https://doi.org/10.3390/app13074550

Tang, W. (2024). Application of support vector machine system introducing multiple submodels in data mining. Systems and Soft Computing, 6(April), 200096. https://doi.org/10.1016/j.sasc.2024.200096

Vakili, M., Ghamsari, M., & Rezaei, M. (2020). Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification. http://dx.doi.org/10.48550/arXiv.2001.09636

Valkenborg, D., Rousseau, A. J., Geubbelmans, M., & Burzykowski, T. (2023). Support vector machines. American Journal of Orthodontics and Dentofacial Orthopedics, 164(5), 754–757. https://doi.org/10.1016/j.ajodo.2023.08.003

Ventre, I., & Kolbe, D. (2020). The Impact of Perceived Usefulness of Online Reviews, Trust and Perceived Risk on Online Purchase Intention in Emerging Markets: A Mexican Perspective. Journal of International Consumer Marketing, 32(4), 287–299. https://doi.org/10.1080/08961530.2020.1712293

Wahyuningsih, S., & Ziyana Untsa, F. (2023). English as Business Lingua Franca: Examining the Use of English in Indonesian Online Business. ELT-Lectura, 10(2), 96–104. https://doi.org/10.31849/elt-lectura.v10i2.13699




DOI: https://doi.org/10.31764/jtam.v9i3.31555

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Raisha Zuhaira Dongoran, Hendra Cipta

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

_______________________________________________

JTAM already indexing:

                     


_______________________________________________

 

Creative Commons License

JTAM (Jurnal Teori dan Aplikasi Matematika) 
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

______________________________________________

_______________________________________________

_______________________________________________ 

JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: