The Characteristics of the First Kind of Chebyshev Polynomials and its Relationship to the Ordinary Polynomials
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Atkinson, K. E. (1989). An Introduction to Numerical Analysis (2nd ed.). Wiley.
Bergamo, P., D’Arco, P., De Santis, A., & Kocarev, L. (2005). Security of public-key cryptosystems based on Chebyshev polynomials. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1382–1393. https://doi.org/10.1109/TCSI.2005.851701
Bhrawy, A. H., & Alofi, A. S. (2013). The operational matrix of fractional integration for shifted Chebyshev polynomials. Applied Mathematics Letters, 26(1), 25–31. https://doi.org/10.1016/j.aml.2012.01.027
Boyd, J. P., & Petschek, R. (2014). The relationships between Chebyshev, Legendre and Jacobi polynomials: The generic superiority of chebyshev polynomials and three important exceptions. Journal of Scientific Computing, 59(1), 1–27. https://doi.org/10.1007/s10915-013-9751-7
Capozziello, S., D’Agostino, R., & Luongo, O. (2018). Cosmographic analysis with Chebyshev polynomials. Monthly Notices of the Royal Astronomical Society, 476(3), 3924–3938. https://doi.org/10.1093/MNRAS/STY422
Cesarano, C. (2012). Identities and generating functions on Chebyshev polynomials. Georgian Mathematical Journal, 19(3), 427–440. https://doi.org/10.1515/gmj-2012-0031
Cesarano, C. (2014). Generalized Chebyshev polynomials. Hacettepe Journal of Mathematics and Statistics, 43(5), 731–740. https://doi.org/10.7151/dmgaa.1278
Dziok, J., Raina, R. K., & Sokół, J. (2015). Application of Chebyshev polynomials to classes of analytic functions. Comptes Rendus Mathematique, 353(5), 433–438. https://doi.org/10.1016/j.crma.2015.02.001
Eslahchi, M. R., Dehghan, M., & Amani, S. (2012). The third and fourth kinds of Chebyshev polynomials and best uniform approximation. Mathematical and Computer Modelling, 55(5–6), 1746–1762. https://doi.org/10.1016/j.mcm.2011.11.023
Hassani, H., Tenreiro Machado, J. A., & Naraghirad, E. (2019). Generalized shifted Chebyshev polynomials for fractional optimal control problems. Communications in Nonlinear Science and Numerical Simulation, 75, 50–61. https://doi.org/10.1016/j.cnsns.2019.03.013
Jajang, J. (2019). Aplikasi Deret Polinomial Cebyshev Dalam Mle Untuk Estimasi Slm. Prosiding, November, 230–241. http://jurnal.lppm.unsoed.ac.id/ojs/index.php/Prosiding/article/view/645
Kafash, B., Delavarkhalafi, A., & Karbassi, S. M. (2012). Application of Chebyshev polynomials to derive efficient algorithms for the solution of optimal control problems. Scientia Iranica, 19(3), 795–805. https://doi.org/10.1016/j.scient.2011.06.012
Kelley, W. G., & Peterson, A. C. (2001). Difference Equations: An Introduction with Applications (Second). Academic Press Harcourt Place.
Khader, M. M. (2012). Introducing an efficient modification of the homotopy perturbation method by using Chebyshev polynomials. Arab Journal of Mathematical Sciences, 18(1), 61–71. https://doi.org/10.1016/j.ajmsc.2011.09.001
Kim, D. S., Kim, T., & Lee, S. H. (2014). Some identities for bernoulli polynomials involving Chebyshev polynomials. Journal of Computational Analysis and Applications, 16(1), 172–180.
Koepf, W. (1999). Efficient Computation of Chebyshev Polynomials in Computer Algebra. Computer Algebra Systems: A Practical Guide, April 1997, 79–99.
Liu, Y. (2009). Application of the Chebyshev polynomial in solving Fredholm integral equations. Mathematical and Computer Modelling, 50(3–4), 465–469. https://doi.org/10.1016/j.mcm.2008.10.007
Mason, J. C., & Handscomb, D. C. (2002). Chebyshev Polynomials. Chapmann and Hall.
Montijano, E., Montijano, J. I., & Sagüés, C. (2013). Chebyshev polynomials in distributed consensus applications. IEEE Transactions on Signal Processing, 61(3), 693–706. https://doi.org/10.1109/TSP.2012.2226173
Qi, F., Lim, D., Guo, B., Expressions, D., & Representations, I. (2018). Explicit Formulas and Identities on Bell Polynomials and Falling. March. https://doi.org/10.13140/RG.2.2.34679.52640
Salih, A. A., & Shihab, S. (2020). New operational matrices approach for optimal control based on modified Chebyshev polynomials Introduction : 2(2), 68–78.
Sedaghat, S., Ordokhani, Y., & Dehghan, M. (2012). Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4815–4830. https://doi.org/10.1016/j.cnsns.2012.05.009
Sweilam, N. H., Nagy, A. M., & El-Sayed, A. A. (2015). Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos, Solitons and Fractals, 73, 141–147. https://doi.org/10.1016/j.chaos.2015.01.010
DOI: https://doi.org/10.31764/jtam.v5i2.4647
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ikhsan Maulidi, Bonno Andri Wibowo, Vina Apriliani, Rofiqul Umam
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: