Dynamic Analysis of COVID-19 Model with Quarantine and Isolation
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Aldila, D., Ndii, M. Z., & Samiadji, B. M. (2020). Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness. Mathematical Biosciences and Engineering, 17(6), 6355–6389. https://doi.org/10.3934/mbe.2020335
Belgaid, Y., Helal, M., & Venturino, E. (2020). Analysis of a Model for Coronavirus Spread. Mathematics, 8(5), 1–30. https://doi.org/10.3390/MATH8050820
Brauer, F., & Castillo-Chavez, C. (2012). Mathematical Models in Population Biology and Epidemiology. In The American Mathematical Monthly (Second Edi, Vol. 110, Issue 3). Springer-Verlag New York. https://doi.org/10.2307/3647954
Chen, T. M., Rui, J., Wang, Q. P., Zhao, Z. Y., Cui, J. A., & Yin, L. (2020). A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infectious Diseases of Poverty, 9(1), 1–8. https://doi.org/10.1186/s40249-020-00640-3
Feng, Z. (2007). Final and Peak Epidemic Sizes for SEIR Models with Quarantine and Isolation. Mathematical Biosciences and Engineering, 4(4), 675–686.
Heffernan, J. M., Smith, R. J., & Wahl, L. M. (2005). Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface, 2(4), 281–293. https://doi.org/10.1098/rsif.2005.0042
Jia, J., Ding, J., Liu, S., Liao, G., Li, J., Duan, B., Wang, G., & Zhang, R. (2020). Modeling the control of COVID-19: Impact of policy interventions and meteorological factors. Electronic Journal of Differential Equations, 2020(23), 1–24.
Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., & Eggo, R. M. (2020). Early dynamics of transmission and control of COVID-19: a mathematical modelling study. The Lancet Infectious Diseases, 20(5), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4
Layek, G. C. (2015). An introduction to Dynamical Systems and Chaos. In An Introduction to Dynamical Systems and Chaos (1st ed.). Springer India. https://doi.org/10.1007/978-81-322-2556-0
Müller, J., & Kuttler, C. (2015). Methods and Models in Mathematical Biology. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27251-6
Murray, J. D. (2002). Mathematical Biology I: An Introduction (3rd ed., Vol. 17). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/b98868
Nainggolan, E. U. (2020). Virus Corona, Mahkota yang Membahayakan. Www.Djkn.Kemenkeu.Go.Id. https://www.djkn.kemenkeu.go.id/artikel/baca/13002/Virus-Corona-Mahkota-yang-Membahayakan.html
Rao, Y., Hu, D., & Huang, G. (2021). Dynamical Analysis of COVID-19 Epidemic Model with Individual Mobility. Communications in Mathematical Biology and Neuroscience, 1–18. https://doi.org/10.28919/cmbn/5189
Rois, M. A., Trisilowati, & Habibah, U. (2021a). Local Sensitivity Analysis of COVID-19 Epidemic with Quarantine and Isolation using Normalized Index. Telematika, 14(1), 13–24. http://dx.doi.org/10.35671/telematika.v14i1.1191
Rois, M. A., Trisilowati, & Habibah, U. (2021b). Optimal Control of Mathematical Model for COVID-19 with Quarantine and Isolation. International Journal of Engineering Trends and Technology, 69(6), 154–160. https://doi.org/10.14445/22315381/IJETT-V69I6P223
Sasmita, N. R., Ikhwan, M., Suyanto, S., & Chongsuvivatwong, V. (2020). Optimal control on a mathematical model to pattern the progression of coronavirus disease 2019 (COVID-19) in Indonesia. Global Health Research and Policy, 5. https://doi.org/10.1186/s41256-020-00163-2
Soewono, E. (2020). On the analysis of Covid-19 transmission in Wuhan, Diamond Princess and Jakarta-cluster. Communication in Biomathematical Sciences, 3(1), 9–18. https://doi.org/10.5614/CBMS.2020.3.1.2
Tahir, M., Ali Shah, S. I., Zaman, G., & Khan, T. (2019). Stability behaviour of mathematical model MERS corona virus spread in population. Filomat, 33(12), 3947–3960. https://doi.org/10.2298/FIL1912947T
Tang, B., Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., & Wu, J. (2020). Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 9(2), 462. https://doi.org/10.3390/jcm9020462
Usaini, S., Hassan, A. S., Garba, S. M., & Lubuma, J. M. S. (2019). Modeling the transmission dynamics of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) with latent immigrants. Journal of Interdisciplinary Mathematics, 22(6), 903–930. https://doi.org/10.1080/09720502.2019.1692429
WHO. (2020a). Novel Coronavirus. https://www.who.int/indonesia/news/novel-coronavirus/qa-for-public
WHO. (2020b). Pertimbangan-pertimbangan untuk karantina individu dalam konteks penanggulangan penyakit coronavirus (COVID-19). https://www.who.int/docs/default-source/searo/indonesia/covid19/who-2019-covid19-ihr-quarantine-2020-indonesian.pdf?sfvrsn=31d7cbd8_2
Yousefpour, A., Jahanshahi, H., & Bekiros, S. (2020). Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak. Chaos, Solitons and Fractals, 136. https://doi.org/10.1016/j.chaos.2020.109883
Zeb, A., Alzahrani, E., Erturk, V. S., & Zaman, G. (2020). Mathematical Model for Coronavirus Disease 2019 (COVID-19) Containing Isolation Class. BioMed Research International, 2020. https://doi.org/10.1155/2020/3452402
DOI: https://doi.org/10.31764/jtam.v5i2.5167
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Muhammad Abdurrahman Rois, Trisilowati Trisilowati, Ummu Habibah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: