Solution of the Second Order of the Linear Hyperbolic Equation Using Cubic B-Spline Collocation Numerical Method
Abstract
Keywords
Full Text:
DOWNLOAD [PDF]References
Akram, T., Abbas, M., Ismail, A. I., Ali, N. H. M., & Baleanu, D. (2019). Extended cubic B-splines in the numerical solution of time fractional telegraph equation. Advances in Difference Equations, 2019(1), 1–20.
Atangana, A. (2015). On the stability and convergence of the time-fractional variable order telegraph equation. Journal of Computational Physics, 293, 104–114.
Biazar, J., & Eslami, M. (2010). Analytic solution for Telegraph equation by differential transform method. Physics Letters A, 374(29), 2904–2906.
Chen, J., Liu, F., & Anh, V. (2008). Analytical solution for the time-fractional telegraph equation by the method of separating variables. Journal of Mathematical Analysis and Applications, 338(2), 1364–1377.
Das, S., Vishal, K., Gupta, P. K., & Yildirim, A. (2011). An approximate analytical solution of time-fractional telegraph equation. Applied Mathematics and Computation, 217(18), 7405–7411.
Dehghan, M., & Ghesmati, A. (2010). Solution of the second-order one-dimensional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method. Engineering Analysis with Boundary Elements, 34(1), 51–59.
Dehghan, M., & Salehi, R. (2012). A method based on meshless approach for the numerical solution of the two‐space dimensional hyperbolic telegraph equation. Mathematical Methods in the Applied Sciences, 35(10), 1220–1233.
Dosti, M., & Nazemi, A. (2012). Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation. Journal of Information and Computing Science, 7(2), 83–90.
Hosseini, V. R., Chen, W., & Avazzadeh, Z. (2014). Numerical solution of fractional telegraph equation by using radial basis functions. Engineering Analysis with Boundary Elements, 38, 31–39.
Javidi, M., & Nyamoradi, N. (2013). Numerical solution of telegraph equation by using LT inversion technique. International Journal of Advanced Mathematical Sciences, 1(2), 64–77.
Jiwari, R., Pandit, S., & Mittal, R. C. (2012). A differential quadrature algorithm for the numerical solution of the second-order one dimensional hyperbolic telegraph equation. International Journal of Nonlinear Science, 13(3), 259–266.
Lakestani, M., & Saray, B. N. (2010). Numerical solution of telegraph equation using interpolating scaling functions. Computers & Mathematics with Applications, 60(7), 1964–1972.
Mittal, R. C., & Jain, R. (2012). Redefined cubic B-splines collocation method for solving convection–diffusion equations. Applied Mathematical Modelling, 36(11), 5555–5573.
Phillips, G. M. (2003). Interpolation and approximation by polynomials (Vol. 14). Springer Science & Business Media.
PM, P. (1975). Spline and variational methods. Wiley, New York.
Rashidinia, J., & Jokar, M. (2016). Application of polynomial scaling functions for numerical solution of telegraph equation. Applicable Analysis, 95(1), 105–123.
Saadatmandi, A., & Dehghan, M. (2010). Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method. Numerical Methods for Partial Differential Equations: An International Journal, 26(1), 239–252.
Sharifi, S., & Rashidinia, J. (2016). Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method. Applied Mathematics and Computation, 281, 28–38.
Srinivasa, K., & Rezazadeh, H. (2021). Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique. International Journal of Nonlinear Sciences and Numerical Simulation, 22(6), 767–780.
Wang, K.-L., Yao, S.-W., Liu, Y.-P., & Zhang, L.-N. (2020). A fractal variational principle for the telegraph equation with fractal derivatives. Fractals, 28(04), 2050058.
DOI: https://doi.org/10.31764/jtam.v6i2.7496
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Aflakha Kharisa, Sri Maryani, Nunung Nurhayati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
_______________________________________________
JTAM already indexing:
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) |
_______________________________________________
_______________________________________________
JTAM (Jurnal Teori dan Aplikasi Matematika) Editorial Office: